doi: 10.3934/dcds.2021035

Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues

1. 

Ingenium College of Liberal Arts, Kwangwoon University, Seoul 01891, Korea

2. 

Division of Medical Mathematics, National Institute for Mathematical Sciences, Daejeon 34047, Korea

3. 

Department of Mathematics, Kyung Hee University, Seoul 02447, Korea

4. 

School of Mathematics, Korea Institute for Advanced Study, Seoul 02455, Korea

5. 

Samsung Fire & Marine Insurance, Seoul 04523, Korea

6. 

Department of Undergraduate Studies, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea

* Corresponding author: Jongmin Han

Received  September 2020 Published  February 2021

In this paper, we study the dynamic phase transition for one dimensional Brusselator model. By the linear stability analysis, we define two critical numbers $ {\lambda}_0 $ and $ {\lambda}_1 $ for the control parameter $ {\lambda} $ in the equation. Motivated by [9], we assume that $ {\lambda}_0< {\lambda}_1 $ and the linearized operator at the trivial solution has multiple critical eigenvalues $ \beta_N^+ $ and $ \beta_{N+1}^+ $. Then, we show that as $ {\lambda} $ passes through $ {\lambda}_0 $, the trivial solution bifurcates to an $ S^1 $-attractor $ {\mathcal A}_N $. We verify that $ {\mathcal A}_N $ consists of eight steady state solutions and orbits connecting them. We compute the leading coefficients of each steady state solution via the center manifold analysis. We also give numerical results to explain the main theorem.

Citation: Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems, doi: 10.3934/dcds.2021035
References:
[1]

R. Anguelov and S. M. Stoltz, Stationary and oscillatory patterns in a coupled Brusselator model, Math. Computers Simul., 133 (2017), 39-46.  doi: 10.1016/j.matcom.2015.06.002.  Google Scholar

[2]

K. J. Brown and F. A. Davidson, Global bifurcation in the Brusselator system, Nonlin. Anal., 12 (1995), 1713-1725.  doi: 10.1016/0362-546X(94)00218-7.  Google Scholar

[3] I. R. Epstein and J. A. Pojman, An Introduction to Nonlinear Chemical Dynamics,, Oxford Univ. Press, 1998.   Google Scholar
[4]

M. Ghergu, Non-constant steady-state solutions for Brusselator type systems, Nonlinearity, 21 (2008), 2331-2345.  doi: 10.1088/0951-7715/21/10/007.  Google Scholar

[5]

B. Guo and Y. Han, Attractor and spatial chaos for the Brusselator in $ \mathbb{R}^N$, Nonlin. Anal., 70 (2009), 3917-3931.  doi: 10.1016/j.na.2008.08.002.  Google Scholar

[6]

H. Kang and Y. Pesin, Dynamics of a discrete brusselator model: Escape to infinity and julia set, Milan J. Math., 73 (2005), 1-17.  doi: 10.1007/s00032-005-0036-y.  Google Scholar

[7]

H. Shoji, K. Yamada, D. Ueyama and T. Ohta, Turing patterns in three dimensions, Phys. Rev. E, 75 (2007), 046212, 13 pp. doi: 10.1103/PhysRevE.75.046212.  Google Scholar

[8]

T. Ma and S. Wang, Bifurcation Theory and Applications, World Scientific, 2005. doi: 10.1142/9789812701152.  Google Scholar

[9]

T. Ma and S. Wang, Phase transitions for the Brusselator model, J. Math. Phys., 52 (2011), 033501, 23 pp. doi: 10.1063/1.3559120.  Google Scholar

[10]

T. Ma and S. Wang, Phase Transition Dynamics 2nd ed., Springer, 2019. doi: 10.1007/978-3-030-29260-7.  Google Scholar

[11]

MathWorks, Matlab: Mathematics(R2020a), Retrieved from https://www.mathworks.com/help/pdf_doc/matlab_math.pdf Google Scholar

[12]

A. S. Mikhailov and K. Showalter, Control of waves, patterns and turbulence in chemical systems, Physics Reports, 425 (2006), 79-194.  doi: 10.1016/j.physrep.2005.11.003.  Google Scholar

[13]

L. A. Peletier and W. C. Troy, Spatial Patterns: Higher Order Models in Physics and Mechanics, Birkhauser, 2001. doi: 10.1007/978-1-4612-0135-9.  Google Scholar

[14]

R. Peng and M. X. Wang, Pattern formation in the Brusselator system, J. Math. Anal. Appl., 309 (2005), 151-166.  doi: 10.1016/j.jmaa.2004.12.026.  Google Scholar

[15]

R. Peng and M. X. Wang, On steady-state solutions of the Brusselator-type system, Nonlin. Anal., 71 (2009), 1389-1394.  doi: 10.1016/j.na.2008.12.003.  Google Scholar

[16]

I. Prigogine and R. Lefever, Symmetry breaking instabilities in dissipative systems, J. Chem. Phys., 48 (1968), 1695-1700.   Google Scholar

[17]

A. TothV. Gaspar and K. Showalter, Signal transmission in chemical systems: Propagation of chemical waves through capillary tubes, J. Phys. Chem., 98 (1994), 522-531.  doi: 10.1021/j100053a029.  Google Scholar

[18]

A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. Roy. Soc. London Ser. B, 237 (1952), 37-72.  doi: 10.1098/rstb.1952.0012.  Google Scholar

[19]

Y. You, Global Dynamics of the Brusselator equations, Dynamics of PDE, 4 (2007), 167-196.  doi: 10.4310/DPDE.2007.v4.n2.a4.  Google Scholar

show all references

References:
[1]

R. Anguelov and S. M. Stoltz, Stationary and oscillatory patterns in a coupled Brusselator model, Math. Computers Simul., 133 (2017), 39-46.  doi: 10.1016/j.matcom.2015.06.002.  Google Scholar

[2]

K. J. Brown and F. A. Davidson, Global bifurcation in the Brusselator system, Nonlin. Anal., 12 (1995), 1713-1725.  doi: 10.1016/0362-546X(94)00218-7.  Google Scholar

[3] I. R. Epstein and J. A. Pojman, An Introduction to Nonlinear Chemical Dynamics,, Oxford Univ. Press, 1998.   Google Scholar
[4]

M. Ghergu, Non-constant steady-state solutions for Brusselator type systems, Nonlinearity, 21 (2008), 2331-2345.  doi: 10.1088/0951-7715/21/10/007.  Google Scholar

[5]

B. Guo and Y. Han, Attractor and spatial chaos for the Brusselator in $ \mathbb{R}^N$, Nonlin. Anal., 70 (2009), 3917-3931.  doi: 10.1016/j.na.2008.08.002.  Google Scholar

[6]

H. Kang and Y. Pesin, Dynamics of a discrete brusselator model: Escape to infinity and julia set, Milan J. Math., 73 (2005), 1-17.  doi: 10.1007/s00032-005-0036-y.  Google Scholar

[7]

H. Shoji, K. Yamada, D. Ueyama and T. Ohta, Turing patterns in three dimensions, Phys. Rev. E, 75 (2007), 046212, 13 pp. doi: 10.1103/PhysRevE.75.046212.  Google Scholar

[8]

T. Ma and S. Wang, Bifurcation Theory and Applications, World Scientific, 2005. doi: 10.1142/9789812701152.  Google Scholar

[9]

T. Ma and S. Wang, Phase transitions for the Brusselator model, J. Math. Phys., 52 (2011), 033501, 23 pp. doi: 10.1063/1.3559120.  Google Scholar

[10]

T. Ma and S. Wang, Phase Transition Dynamics 2nd ed., Springer, 2019. doi: 10.1007/978-3-030-29260-7.  Google Scholar

[11]

MathWorks, Matlab: Mathematics(R2020a), Retrieved from https://www.mathworks.com/help/pdf_doc/matlab_math.pdf Google Scholar

[12]

A. S. Mikhailov and K. Showalter, Control of waves, patterns and turbulence in chemical systems, Physics Reports, 425 (2006), 79-194.  doi: 10.1016/j.physrep.2005.11.003.  Google Scholar

[13]

L. A. Peletier and W. C. Troy, Spatial Patterns: Higher Order Models in Physics and Mechanics, Birkhauser, 2001. doi: 10.1007/978-1-4612-0135-9.  Google Scholar

[14]

R. Peng and M. X. Wang, Pattern formation in the Brusselator system, J. Math. Anal. Appl., 309 (2005), 151-166.  doi: 10.1016/j.jmaa.2004.12.026.  Google Scholar

[15]

R. Peng and M. X. Wang, On steady-state solutions of the Brusselator-type system, Nonlin. Anal., 71 (2009), 1389-1394.  doi: 10.1016/j.na.2008.12.003.  Google Scholar

[16]

I. Prigogine and R. Lefever, Symmetry breaking instabilities in dissipative systems, J. Chem. Phys., 48 (1968), 1695-1700.   Google Scholar

[17]

A. TothV. Gaspar and K. Showalter, Signal transmission in chemical systems: Propagation of chemical waves through capillary tubes, J. Phys. Chem., 98 (1994), 522-531.  doi: 10.1021/j100053a029.  Google Scholar

[18]

A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. Roy. Soc. London Ser. B, 237 (1952), 37-72.  doi: 10.1098/rstb.1952.0012.  Google Scholar

[19]

Y. You, Global Dynamics of the Brusselator equations, Dynamics of PDE, 4 (2007), 167-196.  doi: 10.4310/DPDE.2007.v4.n2.a4.  Google Scholar

Figure 1.  Examples of Structure of $ {\mathcal A}_N $ in Table 1, 2 and 3
Figure 2.  Examples of Structure of $ {\mathcal A}_N $ in Table 4
Figure 3.  Case (ⅰ) of (4.3) and $ N = 4 $. With $ w (x,0) = w_0(x) $, (a) $ u_h(x,t) \to u_1^+(x) $ and (b) $ v_h(x,t) \to v_1^+(x) $. With $ w (x,0) = w_1(x) $, (c) $ u_h(x,t) \to u_1^+(x) $ and (d) $ v_h(x,t) \to v_1^+(x) $
Figure 4.  Case (ⅱ) of (4.3) and $ N = 4 $. With $ w (x,0) = w_0(x) $, (a) $ u_h(x,t) \to u_2^+(x) $ and (b) $ v_h(x,t) \to v_2^+(x) $. With $ w (x,0) = w_1(x) $, (c) $ u_h(x,t) \to u_1^+(x) $ and (d) $ v_h(x,t) \to v_1^+(x) $
Figure 5.  Case (ⅲ) of (4.3) and $ N = 4 $. With $ w (x,0) = w_0(x) $, (a) $ u_h(x,t) \to u_1^+(x) $ and (b) $ v_h(x,t) \to v_1^+(x) $. With $ w (x,0) = w_1(x) $, (c) $ u_h(x,t) \to u_1^+(x) $ and (d) $ v_h(x,t) \to v_1^+(x) $
Figure 6.  Case (ⅰ) of (4.3) and $ N = 8 $. With $ w (x,0) = w_0(x) $, (a) $ u_h(x,t) \to u_1^-(x) $ and (b) $ v_h(x,t) \to v_1^-(x) $. With $ w (x,0) = w_1(x) $, (c) $ u_h(x,t) \to u_1^+(x) $ and (d) $ v_h(x,t) \to v_1^+(x) $
Figure 7.  Case (ⅱ) of (4.3) and $ N = 8 $. With $ w (x,0) = w_0(x) $, (a) $ u_h(x,t) \to u_1^+(x) $ and (b) $ v_h(x,t) \to v_2^+(x) $. With $ w (x,0) = w_2(x) $, (c) $ u_h(x,t) \to u_1^-(x) $ and (d) $ v_h(x,t) \to v_1^-(x) $
Figure 8.  Case (ⅲ) of (4.3) and $ N = 8 $. With $ w (x,0) = w_0(x) $, (a) $ u_h(x,t) \to u_2^+(x) $ and (b) $ v_h(x,t) \to v_2^+(x) $. With $ w (x,0) = w_1(x) $, (c) $ u_h(x,t) \to u_1^-(x) $ and (d) $ v_h(x,t) \to v_1^-(x) $
Table 1.  Stability for $ k = 2 $
subcases $ w_1^+ $ $ w_1^- $ $ w_2^+ $ $ w_2^- $
(ⅰ-1) stable saddle $ \times $ $ \times $
(ⅰ-2) saddle stable $ \times $ $ \times $
(ⅰ-3) $ \times $ $ \times $ stable saddle
(ⅰ-4) $ \times $ $ \times $ saddle stable
subcases $ w_1^+ $ $ w_1^- $ $ w_2^+ $ $ w_2^- $
(ⅰ-1) stable saddle $ \times $ $ \times $
(ⅰ-2) saddle stable $ \times $ $ \times $
(ⅰ-3) $ \times $ $ \times $ stable saddle
(ⅰ-4) $ \times $ $ \times $ saddle stable
Table 2.  Stability for $ k = 4 $
subcases $ w_1^\pm $ $ w_2^\pm $ $ w_3^\pm $ $ w_4^\pm $
(ⅱ-1) stable saddle $ \times $ $ \times $
(ⅱ-2) saddle stable $ \times $ $ \times $
(ⅱ-3) $ \times $ $ \times $ stable saddle
(ⅱ-4) $ \times $ $ \times $ saddle stable
subcases $ w_1^\pm $ $ w_2^\pm $ $ w_3^\pm $ $ w_4^\pm $
(ⅱ-1) stable saddle $ \times $ $ \times $
(ⅱ-2) saddle stable $ \times $ $ \times $
(ⅱ-3) $ \times $ $ \times $ stable saddle
(ⅱ-4) $ \times $ $ \times $ saddle stable
Table 3.  Stability for $ k = 6 $
subcases $ w_1^+ $ $ w_1^- $ $ w_2^+ $ $ w_2^- $ $ w_3^\pm $ $ w_4^\pm $
(ⅲ-1) stable saddle $ \times $ $ \times $ saddle stable
(ⅲ-2) saddle stable $ \times $ $ \times $ stable saddle
(ⅲ-3) $ \times $ $ \times $ stable saddle saddle stable
(ⅲ-4) $ \times $ $ \times $ saddle stable stable saddle
subcases $ w_1^+ $ $ w_1^- $ $ w_2^+ $ $ w_2^- $ $ w_3^\pm $ $ w_4^\pm $
(ⅲ-1) stable saddle $ \times $ $ \times $ saddle stable
(ⅲ-2) saddle stable $ \times $ $ \times $ stable saddle
(ⅲ-3) $ \times $ $ \times $ stable saddle saddle stable
(ⅲ-4) $ \times $ $ \times $ saddle stable stable saddle
Table 4.  Stability for $ k = 8 $
subcases $ w_1^\pm $ $ w_2^\pm $ $ w_3^\pm $ $ w_4^\pm $
(ⅳ-1) stable stable saddle saddle
(ⅳ-2) saddle saddle stable stable
subcases $ w_1^\pm $ $ w_2^\pm $ $ w_3^\pm $ $ w_4^\pm $
(ⅳ-1) stable stable saddle saddle
(ⅳ-2) saddle saddle stable stable
[1]

Liviana Palmisano, Bertuel Tangue Ndawa. A phase transition for circle maps with a flat spot and different critical exponents. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021067

[2]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[3]

Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214

[4]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[5]

Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada. A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks & Heterogeneous Media, 2021, 16 (2) : 187-219. doi: 10.3934/nhm.2021004

[6]

Lu Li. On a coupled Cahn–Hilliard/Cahn–Hilliard model for the proliferative-to-invasive transition of hypoxic glioma cells. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021032

[7]

G. Deugoué, B. Jidjou Moghomye, T. Tachim Medjo. Approximation of a stochastic two-phase flow model by a splitting-up method. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1135-1170. doi: 10.3934/cpaa.2021010

[8]

Takeshi Saito, Kazuyuki Yagasaki. Chebyshev spectral methods for computing center manifolds. Journal of Computational Dynamics, 2021  doi: 10.3934/jcd.2021008

[9]

M. Phani Sudheer, Ravi S. Nanjundiah, A. S. Vasudeva Murthy. Revisiting the slow manifold of the Lorenz-Krishnamurthy quintet. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1403-1416. doi: 10.3934/dcdsb.2006.6.1403

[10]

Chris Guiver, Nathan Poppelreiter, Richard Rebarber, Brigitte Tenhumberg, Stuart Townley. Dynamic observers for unknown populations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3279-3302. doi: 10.3934/dcdsb.2020232

[11]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[12]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[13]

Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021031

[14]

Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021043

[15]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[16]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[17]

Tian Hou, Yi Wang, Xizhuang Xie. Instability and bifurcation of a cooperative system with periodic coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021026

[18]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3579-3614. doi: 10.3934/dcds.2021008

[19]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[20]

Dingheng Pi. Periodic orbits for double regularization of piecewise smooth systems with a switching manifold of codimension two. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021080

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (32)
  • HTML views (104)
  • Cited by (0)

[Back to Top]