September  2021, 41(9): 4297-4318. doi: 10.3934/dcds.2021037

Supercritical elliptic problems involving a Cordes like operator

University of Manitoba, Winnipeg, MB, R3T 2N2, Canada

Received  August 2019 Revised  November 2020 Published  September 2021 Early access  March 2021

Fund Project: The first author is supported by NSERC Discovery Grant

In this work we obtain positive bounded solutions of various perturbations of
$ \begin{equation} \left\{ \begin{array}{lcl} \hfill -\Delta u - \gamma \sum_{i, j = 1}^N \frac{x_i x_j}{|x|^2} u_{x_i x_j} & = & u^p \qquad \mbox{ in } B_1, \\ \hfill u & = & 0 \hfill\qquad\ \mbox{ on } \partial B_1, \end{array}\right. \end{equation} \ \ \ \ \ \ \ \ \ \ \ (1) $
where
$ B_1 $
is the unit ball in
$ {{\mathbb{R}}}^N $
where
$ N \ge 3 $
,
$ \gamma>0 $
and
$ 1<p<p_{N, \gamma} $
where
$ \begin{equation*} p_{N, \gamma}: = \left\{ \begin{array}{lc} \frac{N+2+3 \gamma}{N-2-\gamma} & \qquad \mbox{ if } \gamma<N-2, \\ \infty & \qquad \mbox{ if } \gamma \ge N-2. \end{array}\right. \end{equation*} $
Note for
$ \gamma>0 $
this allows for supercritical range of
$ p $
.
Citation: Craig Cowan. Supercritical elliptic problems involving a Cordes like operator. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4297-4318. doi: 10.3934/dcds.2021037
References:
[1]

L. CaffarelliB. Gidas and J. Spruck, Asymptotic symmetry and local behaviour of semilinear elliptic equations with critical Sobolev growth, Commun. Pure Appl. Math., 42 (1989), 271-297.  doi: 10.1002/cpa.3160420304.

[2]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.  doi: 10.1215/S0012-7094-91-06325-8.

[3]

M. Chicco, Equazioni ellittiche del secondo ordine di tipo Cordes con termini di ordine inferiore, Ann. Mat. Pura Appl., 85 (1970), 347-356.  doi: 10.1007/BF02413544.

[4]

M. ClappM. Grossi and A. Pistoia, Multiple solutions to the Bahri-Coron problem in domains with a shrinking hole of positive dimension, Complex Var. and Elliptic Eqns., 57 (2012), 1147-1162.  doi: 10.1080/17476931003628265.

[5]

H. O. Cordes, Zero order a priori estimates for solutions of elliptic differential equations, Proc. Symp. Pure Math., 4 (1961), 157-166. 

[6]

J. M. Coron, Topologie et cas limite des injections de Sobolev, C.R. Acad. Sc. Paris, Series I, 299 (1984), 209-212. 

[7]

L. DamascelliM. Grossi and F. Pacella, Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle, Ann. Inst. H. Poincaré Anal. Non Linéaire, 16 (1999), 631-652.  doi: 10.1016/S0294-1449(99)80030-4.

[8]

J. Dávila and L. Dupaigne, Perturbing singular solutions of the Gelfand problem, Commun. Contemp. Math., 9 (2007), 639-680.  doi: 10.1142/S0219199707002575.

[9]

M. del Pino, Supercritical elliptic problems from a perturbation viewpoint, Discrete and Continuous Dynamical Systems, 21 (2008), 69-89.  doi: 10.3934/dcds.2008.21.69.

[10]

M. del PinoP. Felmer and Mo nica Musso, Two-bubble solutions in the super-critical Bahri-Coron's problem, Calculus of Variations and Partial Differential Equations, 16 (2003), 113-145.  doi: 10.1007/s005260100142.

[11]

M. del PinoP. Felmer and M. Musso, Multi-bubble solutions for slightly super-critical elliptic problems in domains with symmetries, Bull. London Math. Society, 35 (2003), 513-521.  doi: 10.1112/S0024609303001942.

[12]

M. del Pino and M. Musso, Super-critical bubbling in elliptic boundary value problems, Variational Problems and Related Topics (Kyoto, 2002), 1307 (2003), 85-108. 

[13]

G. Di FazioD. I. Hakim and Y. Sawano, Elliptic equations with discontinuous coefficients in generalized Morrey spaces, European Journal of Mathematics, 3 (2017), 728-762.  doi: 10.1007/s40879-017-0168-y.

[14]

B. GidasW. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Commun. Math. Phys., 68 (1979), 209-243.  doi: 10.1007/BF01221125.

[15]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.  doi: 10.1002/cpa.3160340406.

[16]

F. Gladiali and M. Grossi, Supercritical elliptic problem with nonautonomous nonlinearities, J. Diff. Eqns., 253 (2012), 2616-2645.  doi: 10.1016/j.jde.2012.07.006.

[17]

M. Grossi and F. Takahashi, Nonexistence of multi-bubble solutions to some elliptic equations on convex domains, Jour. Funct. Anal., 259 (2010), 904-917.  doi: 10.1016/j.jfa.2010.03.008.

[18]

M. Hieber and I. Wood, The Dirichlet problem in convex bounded domains for operators in non-divergence form with $L^\infty$ coefficients, Differential and Integral Equations, 20 (2007), 721-734. 

[19]

P. Korman, Global Solution Curves for Semilinear Elliptic Equations, World Scientific Publishing Co. Pte. Ltd.2012. 256 pp. doi: 10.1142/8308.

[20]

C. S. Lin and W. M. NI, A counterexample to the nodal domain conjecture and a related semilinear equation, Proc. Amer. Mat. Soc., 102 (1988), 271-277.  doi: 10.1090/S0002-9939-1988-0920985-9.

[21]

A. Maugeri, D. K. Palagachev and L. G. Softova, Elliptic and Parabolic Equations with Discontinuous Coefficients, Wiley, Berlin, 2000. doi: 10.1002/3527600868.

[22]

R. Mazzeo and F. Pacard, A construction of singular solutions for a semilinear elliptic equation using asymptotic analysis, J. Diff. Geom., 44 (1996), 331-370.  doi: 10.4310/jdg/1214458975.

[23]

D. Passaseo, Nonexistence results for elliptic problems with supercritical nonlinearity in nontrivial domains, J. Funct. Anal., 114 (1993), 97-105.  doi: 10.1006/jfan.1993.1064.

[24]

S. Pohozaev, Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$, Soviet. Math. Dokl., 6 (1965), 1408-1411. 

[25]

M. Struwe, Variational Methods–Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Berlin: Springer-Verlag, 1990. doi: 10.1007/978-3-662-02624-3.

[26]

G. Talenti, Sopra una classe di equazioni ellittiche a coefficienti misurabili, Ann. Mat. Pura Appl., 69 (1965), 285-304.  doi: 10.1007/BF02414375.

[27]

G. Talenti, Equazioni lineari ellittiche in due variabili, Matematiche, 21 (1966), 339-376. 

[28]

K. Wang and J. Wei, Analysis of blow-up locus and existence of weak solutions for nonlinear supercritical problems, International Mathematics Research Notices, 2015 (2015), 2634-2670.  doi: 10.1093/imrn/rnu013.

show all references

References:
[1]

L. CaffarelliB. Gidas and J. Spruck, Asymptotic symmetry and local behaviour of semilinear elliptic equations with critical Sobolev growth, Commun. Pure Appl. Math., 42 (1989), 271-297.  doi: 10.1002/cpa.3160420304.

[2]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.  doi: 10.1215/S0012-7094-91-06325-8.

[3]

M. Chicco, Equazioni ellittiche del secondo ordine di tipo Cordes con termini di ordine inferiore, Ann. Mat. Pura Appl., 85 (1970), 347-356.  doi: 10.1007/BF02413544.

[4]

M. ClappM. Grossi and A. Pistoia, Multiple solutions to the Bahri-Coron problem in domains with a shrinking hole of positive dimension, Complex Var. and Elliptic Eqns., 57 (2012), 1147-1162.  doi: 10.1080/17476931003628265.

[5]

H. O. Cordes, Zero order a priori estimates for solutions of elliptic differential equations, Proc. Symp. Pure Math., 4 (1961), 157-166. 

[6]

J. M. Coron, Topologie et cas limite des injections de Sobolev, C.R. Acad. Sc. Paris, Series I, 299 (1984), 209-212. 

[7]

L. DamascelliM. Grossi and F. Pacella, Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle, Ann. Inst. H. Poincaré Anal. Non Linéaire, 16 (1999), 631-652.  doi: 10.1016/S0294-1449(99)80030-4.

[8]

J. Dávila and L. Dupaigne, Perturbing singular solutions of the Gelfand problem, Commun. Contemp. Math., 9 (2007), 639-680.  doi: 10.1142/S0219199707002575.

[9]

M. del Pino, Supercritical elliptic problems from a perturbation viewpoint, Discrete and Continuous Dynamical Systems, 21 (2008), 69-89.  doi: 10.3934/dcds.2008.21.69.

[10]

M. del PinoP. Felmer and Mo nica Musso, Two-bubble solutions in the super-critical Bahri-Coron's problem, Calculus of Variations and Partial Differential Equations, 16 (2003), 113-145.  doi: 10.1007/s005260100142.

[11]

M. del PinoP. Felmer and M. Musso, Multi-bubble solutions for slightly super-critical elliptic problems in domains with symmetries, Bull. London Math. Society, 35 (2003), 513-521.  doi: 10.1112/S0024609303001942.

[12]

M. del Pino and M. Musso, Super-critical bubbling in elliptic boundary value problems, Variational Problems and Related Topics (Kyoto, 2002), 1307 (2003), 85-108. 

[13]

G. Di FazioD. I. Hakim and Y. Sawano, Elliptic equations with discontinuous coefficients in generalized Morrey spaces, European Journal of Mathematics, 3 (2017), 728-762.  doi: 10.1007/s40879-017-0168-y.

[14]

B. GidasW. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Commun. Math. Phys., 68 (1979), 209-243.  doi: 10.1007/BF01221125.

[15]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.  doi: 10.1002/cpa.3160340406.

[16]

F. Gladiali and M. Grossi, Supercritical elliptic problem with nonautonomous nonlinearities, J. Diff. Eqns., 253 (2012), 2616-2645.  doi: 10.1016/j.jde.2012.07.006.

[17]

M. Grossi and F. Takahashi, Nonexistence of multi-bubble solutions to some elliptic equations on convex domains, Jour. Funct. Anal., 259 (2010), 904-917.  doi: 10.1016/j.jfa.2010.03.008.

[18]

M. Hieber and I. Wood, The Dirichlet problem in convex bounded domains for operators in non-divergence form with $L^\infty$ coefficients, Differential and Integral Equations, 20 (2007), 721-734. 

[19]

P. Korman, Global Solution Curves for Semilinear Elliptic Equations, World Scientific Publishing Co. Pte. Ltd.2012. 256 pp. doi: 10.1142/8308.

[20]

C. S. Lin and W. M. NI, A counterexample to the nodal domain conjecture and a related semilinear equation, Proc. Amer. Mat. Soc., 102 (1988), 271-277.  doi: 10.1090/S0002-9939-1988-0920985-9.

[21]

A. Maugeri, D. K. Palagachev and L. G. Softova, Elliptic and Parabolic Equations with Discontinuous Coefficients, Wiley, Berlin, 2000. doi: 10.1002/3527600868.

[22]

R. Mazzeo and F. Pacard, A construction of singular solutions for a semilinear elliptic equation using asymptotic analysis, J. Diff. Geom., 44 (1996), 331-370.  doi: 10.4310/jdg/1214458975.

[23]

D. Passaseo, Nonexistence results for elliptic problems with supercritical nonlinearity in nontrivial domains, J. Funct. Anal., 114 (1993), 97-105.  doi: 10.1006/jfan.1993.1064.

[24]

S. Pohozaev, Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$, Soviet. Math. Dokl., 6 (1965), 1408-1411. 

[25]

M. Struwe, Variational Methods–Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Berlin: Springer-Verlag, 1990. doi: 10.1007/978-3-662-02624-3.

[26]

G. Talenti, Sopra una classe di equazioni ellittiche a coefficienti misurabili, Ann. Mat. Pura Appl., 69 (1965), 285-304.  doi: 10.1007/BF02414375.

[27]

G. Talenti, Equazioni lineari ellittiche in due variabili, Matematiche, 21 (1966), 339-376. 

[28]

K. Wang and J. Wei, Analysis of blow-up locus and existence of weak solutions for nonlinear supercritical problems, International Mathematics Research Notices, 2015 (2015), 2634-2670.  doi: 10.1093/imrn/rnu013.

[1]

Manuel del Pino. Supercritical elliptic problems from a perturbation viewpoint. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 69-89. doi: 10.3934/dcds.2008.21.69

[2]

Mousomi Bhakta, Debangana Mukherjee. Semilinear nonlocal elliptic equations with critical and supercritical exponents. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1741-1766. doi: 10.3934/cpaa.2017085

[3]

Yessine Dammak. Blowing-up solutions for a supercritical elliptic equation. Communications on Pure and Applied Analysis, 2022, 21 (2) : 625-637. doi: 10.3934/cpaa.2021191

[4]

Soohyun Bae. Positive entire solutions of inhomogeneous semilinear elliptic equations with supercritical exponent. Conference Publications, 2005, 2005 (Special) : 50-59. doi: 10.3934/proc.2005.2005.50

[5]

Liping Wang. Arbitrarily many solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity. Communications on Pure and Applied Analysis, 2010, 9 (3) : 761-778. doi: 10.3934/cpaa.2010.9.761

[6]

Yuxin Ge, Ruihua Jing, Feng Zhou. Bubble tower solutions of slightly supercritical elliptic equations and application in symmetric domains. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 751-770. doi: 10.3934/dcds.2007.17.751

[7]

Satoshi Hashimoto, Mitsuharu Ôtani. Existence of nontrivial solutions for some elliptic equations with supercritical nonlinearity in exterior domains. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 323-333. doi: 10.3934/dcds.2007.19.323

[8]

Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128

[9]

Xavier Cabré. Elliptic PDE's in probability and geometry: Symmetry and regularity of solutions. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 425-457. doi: 10.3934/dcds.2008.20.425

[10]

Robert Jensen, Andrzej Świech. Uniqueness and existence of maximal and minimal solutions of fully nonlinear elliptic PDE. Communications on Pure and Applied Analysis, 2005, 4 (1) : 199-207. doi: 10.3934/cpaa.2005.4.187

[11]

Paul H. Rabinowitz. A new variational characterization of spatially heteroclinic solutions of a semilinear elliptic PDE. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 507-515. doi: 10.3934/dcds.2004.10.507

[12]

John Villavert. On problems with weighted elliptic operator and general growth nonlinearities. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1347-1361. doi: 10.3934/cpaa.2021023

[13]

Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems and Imaging, 2021, 15 (4) : 599-618. doi: 10.3934/ipi.2021006

[14]

Juan Carlos Fernández, Oscar Palmas, Jimmy Petean. Supercritical elliptic problems on the round sphere and nodal solutions to the Yamabe problem in projective spaces. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2495-2514. doi: 10.3934/dcds.2020123

[15]

Zhihua Huang, Xiaochun Liu. Existence theorem for a class of semilinear totally characteristic elliptic equations involving supercritical cone sobolev exponents. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3201-3216. doi: 10.3934/cpaa.2019144

[16]

Phuong Le. Liouville theorems for stable weak solutions of elliptic problems involving Grushin operator. Communications on Pure and Applied Analysis, 2020, 19 (1) : 511-525. doi: 10.3934/cpaa.2020025

[17]

Huyuan Chen, Feng Zhou. Isolated singularities for elliptic equations with hardy operator and source nonlinearity. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 2945-2964. doi: 10.3934/dcds.2018126

[18]

Foued Mtiri. Liouville type theorems for stable solutions of elliptic system involving the Grushin operator. Communications on Pure and Applied Analysis, 2022, 21 (2) : 541-553. doi: 10.3934/cpaa.2021187

[19]

Danielle Hilhorst, Pierre Roux. A hyperbolic-elliptic-parabolic PDE model describing chemotactic E. Coli colonies. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 2993-3015. doi: 10.3934/dcdss.2021033

[20]

Mengyao Ding, Sining Zheng. $ L^γ$-measure criteria for boundedness in a quasilinear parabolic-elliptic Keller-Segel system with supercritical sensitivity. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 2971-2988. doi: 10.3934/dcdsb.2018295

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (168)
  • HTML views (166)
  • Cited by (0)

Other articles
by authors

[Back to Top]