Advanced Search
Article Contents
Article Contents

Dirichlet and transmission problems for anisotropic stokes and Navier-Stokes systems with L tensor coefficient under relaxed ellipticity condition

  • *Corresponding author

    *Corresponding author 
Abstract Full Text(HTML) Figure(2) Related Papers Cited by
  • The first aim of this paper is to show well-posedness of Dirichlet and transmission problems in bounded and exterior Lipschitz domains in $ {\mathbb R}^n $, $ n\geq 3 $, for the anisotropic Stokes system with $ L_{\infty } $ viscosity tensor coefficient satisfying an ellipticity condition in terms of symmetric matrices with zero matrix trace, with data from standard and weighted Sobolev spaces. To this end we reduce the linear problems to equivalent mixed variational formulations and show that the variational problems are well-posed. Then we use the Leray-Schauder fixed point theorem and establish the existence of a weak solution for nonlinear Dirichlet and transmission problems for the anisotropic Navier-Stokes system in bounded Lipschitz domains in $ {\mathbb R}^3 $, with general (including large) data in Sobolev spaces. For exterior domains in $ {\mathbb R}^3 $, the analysis of the nonlinear Dirichlet and transmission problems in weighted Sobolev spaces relies on the existence result for the Dirichlet problem for the anisotropic Navier-Stokes system in a family of bounded Lipschitz domains. The obtained estimates for pressure in $ {\mathbb R}^3 $ look new also for the classical isotropic case.

    Mathematics Subject Classification: Primary: 35J57, 35Q30, 46E35, 76M30; Secondary: 76D03, 76D05, 76D07.


    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Bounded composite domain $ \Omega_{} = \overline{\Omega^0_+}\cup \Omega^0_- $

    Figure 2.  Composite space $ \mathbb R^n = \overline{\Omega^0_+}\cup \Omega^0_- $

  • [1] R. A. Adams and  J. J. F. FournierSobolev Spaces, Academic Press, 2003. 
    [2] F. Alliot and C. Amrouche, The Stokes problem in ${\mathbb R}^n$: An approach in weighted Sobolev spaces, Math. Models Meth. Appl. Sci., 9 (1999), 723-754.  doi: 10.1142/S0218202599000361.
    [3] F. Alliot and C. Amrouche, On the regularity and decay of the weak solutions to the steady-state Navier-Stokes equations in exterior domains, in Applied Nonlinear Analysis (eds. A. Sequeira, H. Beirao da Veiga and J. H. Videman), Kluwer Academic, Dordrecht, (1999), 1–18. doi: 10.1007/0-306-47096-9_1.
    [4] F. Alliot and C. Amrouche, Weak solutions for the exterior Stokes problem in weighted Sobolev spaces, Math. Meth. Appl. Sci., 23 (2000), 575-600.  doi: 10.1002/(SICI)1099-1476(200004)23:6<575::AID-MMA128>3.0.CO;2-4.
    [5] C. AmroucheP. G. Ciarlet and C. Mardare, On a Lemma of Jacques-Louis Lions and its relation to other fundamental results, J. Math. Pures Appl., 104 (2015), 207-226.  doi: 10.1016/j.matpur.2014.11.007.
    [6] C. AmroucheV. Girault and J. Giroire, Dirichlet and Neumann exterior problems for the $n$-dimensional Laplace operator. An approach in weighted Sobolev spaces, J. Math. Pures Appl., 76 (1997), 55-81.  doi: 10.1016/S0021-7824(97)89945-X.
    [7] I. Babuška, The finite element method with Lagrangian multipliers, Numer. Math., 20 (1973), 179-192.  doi: 10.1007/BF01436561.
    [8] M. E. Bogovskiǐ, Solution of some problems of vector analysis related with operators div and grad, in Teoriya Kubaturnyh Formul I Prilozheniya Funktsional'nogo Analiza k Zadacham Matematicheskoi Fiziki. Trudy Seminara S.L.Soboleva, No.1, Siberian brunch of the Academy of Sci. of USSR, Institute of Mathematics, Novosibirsk, (1980), 5–40 (in Russian).
    [9] W. Borchers and H. Sohr, The equations ${\rm rot}\, v = g$ and ${\rm div}\, u = f$ with zero boundary condition, Hokkaido Math. J., 19 (1990), 67-87.  doi: 10.14492/hokmj/1381517172.
    [10] K. BrewsterD. MitreaI. Mitrea and M. Mitrea, Extending Sobolev functions with partially vanishing traces from locally $(\epsilon, \delta)$-domains and applications to mixed boundary problems, J. Funct. Anal., 266 (2014), 4314-4421.  doi: 10.1016/j.jfa.2014.02.001.
    [11] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers, R.A.I.R.O. Anal. Numer., 8 (1974), 129-151. 
    [12] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Series in Comput. Math., 15, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-3172-1.
    [13] O. ChkaduaS. E. Mikhailov and D. Natroshvili, Analysis of direct boundary-domain integral equations for a mixed BVP with variable coefficient. I. Equivalence and invertibility, J. Int. Equ. Appl., 21 (2009), 499-542.  doi: 10.1216/JIE-2009-21-4-499.
    [14] O. ChkaduaS. E. Mikhailov and D. Natroshvili, Analysis of direct boundary-domain integral equations for a mixed BVP with variable coefficient. Ⅱ. Solution regularity and asymptotics, J. Int. Equ. Appl., 22 (2010), 19-37.  doi: 10.1216/JIE-2010-22-1-19.
    [15] J. ChoiH. Dong and D. Kim, Conormal derivative problems for stationary Stokes system in Sobolev spaces, Discrete Contin. Dyn. Syst., 38 (2018), 2349-2374.  doi: 10.3934/dcds.2018097.
    [16] J. ChoiH. Dong and D. Kim, Green functions of conormal derivative problems for stationary Stokes system, J. Math. Fluid Mech., 20 (2018), 1745-1769.  doi: 10.1007/s00021-018-0387-0.
    [17] J. Choi and M. Yang, Fundamental solutions for stationary Stokes systems with measurable coefficients, J. Diff. Equ., 263 (2017), 3854-3893.  doi: 10.1016/j.jde.2017.05.005.
    [18] M. Costabel, Boundary integral operators on Lipschitz domains: Elementary results, SIAM J. Math. Anal., 19 (1988), 613-626.  doi: 10.1137/0519043.
    [19] M. Dindoš and M. Mitrea, The stationary Navier-Stokes system in nonsmooth manifolds: The Poisson problem in Lipschitz and $C^1$ domains, Arch. Rational Mech. Anal., 174 (2004), 1-47.  doi: 10.1007/s00205-004-0320-y.
    [20] B. R. Duffy, Flow of a liquid with an anisotropic viscosity tensor, J. Nonnewton. Fluid Mech., 4 (1978), 177-193.  doi: 10.1016/0377-0257(78)80002-0.
    [21] A. Ern and J. L. Guermond, Theory and Practice of Finite Elements, Springer, New York, 2004. doi: 10.1007/978-1-4757-4355-5.
    [22] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Steady-State Problems, Second Edition, Springer, New York, 2011. doi: 10.1007/978-0-387-09620-9.
    [23] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 2001.
    [24] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms, Springer, Berlin, 1986. doi: 10.1007/978-3-642-61623-5.
    [25] V. Girault and A. Sequeira, A well-posed problem for the exterior Stokes equations in two and three dimensions, Arch. Rational Mech. Anal., 114 (1991), 313-333.  doi: 10.1007/BF00376137.
    [26] B. Hanouzet, Espaces de Sobolev avec poids – application au probléme de Dirichlet dans un demi-espace, Rend. Sere. Mat. Univ. Padova, 46 (1971), 227-272. 
    [27] G. C. Hsiao and W. L. Wendland, Boundary Integral Equations, Springer-Verlag, Heidelberg 2008. doi: 10.1007/978-3-540-68545-6.
    [28] M. Kohr, M. Lanza de Cristoforis, S. E. Mikhailov and W. L. Wendland, Integral potential method for transmission problem with Lipschitz interface in ${\mathbb R}^3$ for the Stokes and Darcy-Forchheimer-Brinkman PDE systems,, Z. Angew. Math. Phys., 67 (2016), Art. 116, 30 pp. doi: 10.1007/s00033-016-0696-1.
    [29] M. KohrM. Lanza de Cristoforis and W. L. Wendland, Nonlinear Neumann-transmission problems for Stokes and Brinkman equations on Euclidean Lipschitz domains, Potential Anal., 38 (2013), 1123-1171.  doi: 10.1007/s11118-012-9310-0.
    [30] M. KohrM. Lanza de Cristoforis and W. L. Wendland, Poisson problems for semilinear Brinkman systems on Lipschitz domains in ${\mathbb R}^3$, Z. Angew. Math. Phys., 66 (2015), 833-864.  doi: 10.1007/s00033-014-0439-0.
    [31] M. KohrS. E. Mikhailov and W. L. Wendland, Potentials and transmission problems in weighted Sobolev spaces for anisotropic Stokes and Navier-Stokes systems with $L_\infty $ strongly elliptic coefficient tensor, Complex Var. Elliptic Equ., 65 (2020), 109-140.  doi: 10.1080/17476933.2019.1631293.
    [32] M. Kohr, S. E. Mikhailov and W. L. Wendland, Layer potential theory for the anisotropic Stokes system with variable $L_\infty$ symmetrically elliptic tensor coefficient, Math. Meth. Appl. Sci., to appear.
    [33] M. Kohr and W. L. Wendland, Variational approach for the Stokes and Navier-Stokes systems with nonsmooth coefficients in Lipschitz domains on compact Riemannian manifolds, Calc. Var. Partial Differ. Equ., 57 (2018), Paper No. 165, 41 pp. doi: 10.1007/s00526-018-1426-7.
    [34] M. Kohr and W. L. Wendland, Layer potentials and Poisson problems for the nonsmooth coefficient Brinkman system in Sobolev and Besov spaces, J. Math. Fluid Mech., 20 (2018), 1921-1965.  doi: 10.1007/s00021-018-0394-1.
    [35] O. A. Ladyzhenskaya and V. A. Solonnikov, Some problems of vector analysis and generalized formulations of boundary value problems for Navier-Stokes equations, Zap. Nauchn. Sem. LOMI. Leningrad. Otdel. Mat. Inst. Steklov, 59 (1976), 81-116. 
    [36] A. L. Mazzucato and V. Nistor, Well-posedness and regularity for the elasticity equation with mixed boundary conditions on polyhedral domains and domains with cracks, Arch. Rational Mech. Anal., 195 (2010), 25-73.  doi: 10.1007/s00205-008-0180-y.
    [37] W. McLeanStrongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, UK, 2000. 
    [38] S. E. Mikhailov, Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains, J. Math. Anal. Appl., 378 (2011), 324-342.  doi: 10.1016/j.jmaa.2010.12.027.
    [39] S. E. Mikhailov, Solution regularity and co-normal derivatives for elliptic systems with non-smooth coefficients on Lipschitz domains, J. Math. Anal. Appl., 400 (2013), 48-67.  doi: 10.1016/j.jmaa.2012.10.045.
    [40] S. E. Mikhailov and C. Fresneda-Portillo, Boundary-domain integral equations equivalent to an exterior mixed BVP for the variable-viscosity compressible Stokes PDEs, Comm. Pure and Applied Analysis, 18 (2019), 3059-3088.  doi: 10.3934/cpaa.2019137.
    [41] M. Mitrea and M. Wright, Boundary value problems for the Stokes system in arbitrary Lipschitz domains., Astérisque, 344 (2012), viii+241 pp.
    [42] O. A. Oleinik, A. S. Shamaev and G. A. Yosifian, Mathematical Problems in Elasticity and Homogenization, North-Holland, Amsterdam, 1992.
    [43] E. Otárola and A. J. Salgado, A weighted setting for the stationary Navier-Stokes equations under singular forcing, Appl. Math. Letters, 99 (2020), 105933, 7pp. doi: 10.1016/j.aml.2019.06.004.
    [44] T. Runst and W. Sickel, Sobolev Spaces of Fractional order, Nemytskij Operators, and Nonlinear Partial Differential Equations, De Gruyter, Berlin, 1996. doi: 10.1515/9783110812411.
    [45] F.-J. Sayas and V. Selgas, Variational views of Stokeslets and stresslets, SeMA, 63 (2014), 65-90.  doi: 10.1007/s40324-014-0013-x.
    [46] G. Seregin, Lecture Notes on Regularity Theory for the Navier-Stokes Equations, World Scientific, London, 2015.
    [47] L. Tartar, Topics in Nonlinear Analysis, Publications Mathéatiques d'Orsay, 1978.
    [48] R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, AMS Chelsea Publishing, Providence, 2001. doi: 10.1090/chel/343.
  • 加载中



Article Metrics

HTML views(471) PDF downloads(218) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint