September  2021, 41(9): 4477-4484. doi: 10.3934/dcds.2021044

Centralizers of partially hyperbolic diffeomorphisms in dimension 3

1. 

Queen's University, Kingston, Ontario

2. 

Ohio State University, Columbus, Ohio

* Corresponding author: Andrey Gogolev

Received  January 2021 Revised  January 2021 Published  September 2021 Early access  March 2021

Fund Project: The first author was partially supported by the NSERC (Funding reference number RGPIN-2017-04592). The second author was partially supported by NSF DMS-1823150

In this note we describe centralizers of volume preserving partially hyperbolic diffeomorphisms which are homotopic to identity on Seifert fibered and hyperbolic 3-manifolds. Our proof follows the strategy of Damjanovic, Wilkinson and Xu [10] who recently classified the centralizer for perturbations of time-$ 1 $ maps of geodesic flows in negative curvature. We strongly rely on recent classification results in dimension 3 established in [5,6].

Citation: Thomas Barthelmé, Andrey Gogolev. Centralizers of partially hyperbolic diffeomorphisms in dimension 3. Discrete & Continuous Dynamical Systems, 2021, 41 (9) : 4477-4484. doi: 10.3934/dcds.2021044
References:
[1]

T. Adachi, Closed orbits of an Anosov flow and the fundamental group, Proc. Amer. Math. Soc., 100 (1987), 595-598.  doi: 10.1090/S0002-9939-1987-0891171-5.  Google Scholar

[2]

A. AvilaM. Viana and A. Wilkinson, Absolute continuity, Lyapunov exponents and rigidity Ⅰ: Geodesic flows, J. Eur. Math. Soc. (JEMS), 17 (2015), 1435-1462.  doi: 10.4171/JEMS/534.  Google Scholar

[3]

A. Avila, M. Viana and A. Wilkinson, Absolute continuity, lyapunov exponents and rigidity Ⅱ: Systems with compact center leaves, to appear in Erg. Th. Dyn. Syst. (Katok memorial issue), 2019, available at http://www.math.uchicago.edu/ wilkinso/papers/AVW2.pdf Google Scholar

[4]

T. Barbot, De l'hyperbolique au globalement hyperbolique, Habilitation à diriger des recherches, Université Claude Bernard de Lyon, 2005, available at https://tel.archives-ouvertes.fr/tel-00011278. Google Scholar

[5]

T. Barthelmé, S. R. Fenley, S. Frankel and R. Potrie, Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, Part Ⅰ: The dynamically coherent case, arXiv e-prints (2019), arXiv:1908.06227. Google Scholar

[6]

T. Barthelmé, S. R. Fenley, S. Frankel and R. Potrie, Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, Part Ⅱ: Branching foliations, arXiv e-prints (2020), arXiv:2008.04871. Google Scholar

[7]

T. Barthelmé and A. Gogolev, A note on self orbit equivalences of Anosov flows and bundles with fiberwise Anosov flows, MRL, 26 (2019). Google Scholar

[8]

M. I. Brin, Topological transitivity of a certain class of dynamical systems, and flows of frames on manifolds of negative curvature, Funkcional. Anal. i Priložen, 9 (1975), 9-19.   Google Scholar

[9]

K. Burns and A. Wilkinson, On the ergodicity of partially hyperbolic systems, Ann. of Math., 171 (2010), 451-489.  doi: 10.4007/annals.2010.171.451.  Google Scholar

[10]

D. Damjanovic, A. Wilkinson and D. Xu, Pathology and asymmetry: Centralizer rigidity for partially hyperbolic diffeomorphisms, To appear in Duke Math. J., (2019), arXiv:1902.05201. Google Scholar

[11]

S. Fenley and R. Potrie, Ergodicity of partially hyperbolic diffeomorphisms in hyperbolic 3-manifolds, arXiv e-prints, 2018, arXiv:1809.02284. Google Scholar

[12]

A. Hammerlindl and R. Potrie, Partial hyperbolicity and classification: A survey, Ergodic Theory Dynam. Systems, 38 (2018), 401-443.  doi: 10.1017/etds.2016.50.  Google Scholar

[13]

S. Hong and D. McCullough, Mapping class groups of 3-manifolds, then and now, Geometry and Topology Down Under, Contemp. Math., vol. 597, Amer. Math. Soc., Providence, RI, 2013, 53–63. doi: 10.1090/conm/597/11768.  Google Scholar

[14]

D. McCullough, Virtually geometrically finite mapping class groups of 3-manifolds, J. Differential Geom., 33 (1991), 1-65.  doi: 10.4310/jdg/1214446029.  Google Scholar

[15]

J. F. Plante, Anosov flows, Amer. J. Math., 94 (1972), 729-754.  doi: 10.2307/2373755.  Google Scholar

[16]

W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque (1990), 268pp.  Google Scholar

[17]

F. Rodriguez HertzM. Rodriguez Hertz and R. Ures, Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle, Invent. Math., 172 (2008), 353-381.  doi: 10.1007/s00222-007-0100-z.  Google Scholar

show all references

References:
[1]

T. Adachi, Closed orbits of an Anosov flow and the fundamental group, Proc. Amer. Math. Soc., 100 (1987), 595-598.  doi: 10.1090/S0002-9939-1987-0891171-5.  Google Scholar

[2]

A. AvilaM. Viana and A. Wilkinson, Absolute continuity, Lyapunov exponents and rigidity Ⅰ: Geodesic flows, J. Eur. Math. Soc. (JEMS), 17 (2015), 1435-1462.  doi: 10.4171/JEMS/534.  Google Scholar

[3]

A. Avila, M. Viana and A. Wilkinson, Absolute continuity, lyapunov exponents and rigidity Ⅱ: Systems with compact center leaves, to appear in Erg. Th. Dyn. Syst. (Katok memorial issue), 2019, available at http://www.math.uchicago.edu/ wilkinso/papers/AVW2.pdf Google Scholar

[4]

T. Barbot, De l'hyperbolique au globalement hyperbolique, Habilitation à diriger des recherches, Université Claude Bernard de Lyon, 2005, available at https://tel.archives-ouvertes.fr/tel-00011278. Google Scholar

[5]

T. Barthelmé, S. R. Fenley, S. Frankel and R. Potrie, Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, Part Ⅰ: The dynamically coherent case, arXiv e-prints (2019), arXiv:1908.06227. Google Scholar

[6]

T. Barthelmé, S. R. Fenley, S. Frankel and R. Potrie, Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, Part Ⅱ: Branching foliations, arXiv e-prints (2020), arXiv:2008.04871. Google Scholar

[7]

T. Barthelmé and A. Gogolev, A note on self orbit equivalences of Anosov flows and bundles with fiberwise Anosov flows, MRL, 26 (2019). Google Scholar

[8]

M. I. Brin, Topological transitivity of a certain class of dynamical systems, and flows of frames on manifolds of negative curvature, Funkcional. Anal. i Priložen, 9 (1975), 9-19.   Google Scholar

[9]

K. Burns and A. Wilkinson, On the ergodicity of partially hyperbolic systems, Ann. of Math., 171 (2010), 451-489.  doi: 10.4007/annals.2010.171.451.  Google Scholar

[10]

D. Damjanovic, A. Wilkinson and D. Xu, Pathology and asymmetry: Centralizer rigidity for partially hyperbolic diffeomorphisms, To appear in Duke Math. J., (2019), arXiv:1902.05201. Google Scholar

[11]

S. Fenley and R. Potrie, Ergodicity of partially hyperbolic diffeomorphisms in hyperbolic 3-manifolds, arXiv e-prints, 2018, arXiv:1809.02284. Google Scholar

[12]

A. Hammerlindl and R. Potrie, Partial hyperbolicity and classification: A survey, Ergodic Theory Dynam. Systems, 38 (2018), 401-443.  doi: 10.1017/etds.2016.50.  Google Scholar

[13]

S. Hong and D. McCullough, Mapping class groups of 3-manifolds, then and now, Geometry and Topology Down Under, Contemp. Math., vol. 597, Amer. Math. Soc., Providence, RI, 2013, 53–63. doi: 10.1090/conm/597/11768.  Google Scholar

[14]

D. McCullough, Virtually geometrically finite mapping class groups of 3-manifolds, J. Differential Geom., 33 (1991), 1-65.  doi: 10.4310/jdg/1214446029.  Google Scholar

[15]

J. F. Plante, Anosov flows, Amer. J. Math., 94 (1972), 729-754.  doi: 10.2307/2373755.  Google Scholar

[16]

W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque (1990), 268pp.  Google Scholar

[17]

F. Rodriguez HertzM. Rodriguez Hertz and R. Ures, Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle, Invent. Math., 172 (2008), 353-381.  doi: 10.1007/s00222-007-0100-z.  Google Scholar

[1]

Rafael Potrie. Partially hyperbolic diffeomorphisms with a trapping property. Discrete & Continuous Dynamical Systems, 2015, 35 (10) : 5037-5054. doi: 10.3934/dcds.2015.35.5037

[2]

Lorenzo J. Díaz, Todd Fisher. Symbolic extensions and partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems, 2011, 29 (4) : 1419-1441. doi: 10.3934/dcds.2011.29.1419

[3]

Andy Hammerlindl, Rafael Potrie, Mario Shannon. Seifert manifolds admitting partially hyperbolic diffeomorphisms. Journal of Modern Dynamics, 2018, 12: 193-222. doi: 10.3934/jmd.2018008

[4]

Lorenzo J. Díaz, Todd Fisher, M. J. Pacifico, José L. Vieitez. Entropy-expansiveness for partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems, 2012, 32 (12) : 4195-4207. doi: 10.3934/dcds.2012.32.4195

[5]

Boris Kalinin, Victoria Sadovskaya. Holonomies and cohomology for cocycles over partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems, 2016, 36 (1) : 245-259. doi: 10.3934/dcds.2016.36.245

[6]

Lin Wang, Yujun Zhu. Center specification property and entropy for partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems, 2016, 36 (1) : 469-479. doi: 10.3934/dcds.2016.36.469

[7]

Andrey Gogolev. Partially hyperbolic diffeomorphisms with compact center foliations. Journal of Modern Dynamics, 2011, 5 (4) : 747-769. doi: 10.3934/jmd.2011.5.747

[8]

Dmitri Burago, Sergei Ivanov. Partially hyperbolic diffeomorphisms of 3-manifolds with Abelian fundamental groups. Journal of Modern Dynamics, 2008, 2 (4) : 541-580. doi: 10.3934/jmd.2008.2.541

[9]

Keith Burns, Federico Rodriguez Hertz, María Alejandra Rodriguez Hertz, Anna Talitskaya, Raúl Ures. Density of accessibility for partially hyperbolic diffeomorphisms with one-dimensional center. Discrete & Continuous Dynamical Systems, 2008, 22 (1&2) : 75-88. doi: 10.3934/dcds.2008.22.75

[10]

Yujun Zhu. Topological quasi-stability of partially hyperbolic diffeomorphisms under random perturbations. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 869-882. doi: 10.3934/dcds.2014.34.869

[11]

Michael Brin, Dmitri Burago, Sergey Ivanov. Dynamical coherence of partially hyperbolic diffeomorphisms of the 3-torus. Journal of Modern Dynamics, 2009, 3 (1) : 1-11. doi: 10.3934/jmd.2009.3.1

[12]

Doris Bohnet. Codimension-1 partially hyperbolic diffeomorphisms with a uniformly compact center foliation. Journal of Modern Dynamics, 2013, 7 (4) : 565-604. doi: 10.3934/jmd.2013.7.565

[13]

Radu Saghin. Volume growth and entropy for $C^1$ partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems, 2014, 34 (9) : 3789-3801. doi: 10.3934/dcds.2014.34.3789

[14]

Mauricio Poletti. Stably positive Lyapunov exponents for symplectic linear cocycles over partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems, 2018, 38 (10) : 5163-5188. doi: 10.3934/dcds.2018228

[15]

Christian Bonatti, Sylvain Crovisier, Amie Wilkinson. $C^1$-generic conservative diffeomorphisms have trivial centralizer. Journal of Modern Dynamics, 2008, 2 (2) : 359-373. doi: 10.3934/jmd.2008.2.359

[16]

Pengfei Zhang. Partially hyperbolic sets with positive measure and $ACIP$ for partially hyperbolic systems. Discrete & Continuous Dynamical Systems, 2012, 32 (4) : 1435-1447. doi: 10.3934/dcds.2012.32.1435

[17]

Zhenqi Jenny Wang. Local rigidity of partially hyperbolic actions. Journal of Modern Dynamics, 2010, 4 (2) : 271-327. doi: 10.3934/jmd.2010.4.271

[18]

Zhenqi Jenny Wang. Local rigidity of partially hyperbolic actions. Electronic Research Announcements, 2010, 17: 68-79. doi: 10.3934/era.2010.17.68

[19]

Luiz Felipe Nobili França. Partially hyperbolic sets with a dynamically minimal lamination. Discrete & Continuous Dynamical Systems, 2018, 38 (6) : 2717-2729. doi: 10.3934/dcds.2018114

[20]

Alexander Arbieto, Luciano Prudente. Uniqueness of equilibrium states for some partially hyperbolic horseshoes. Discrete & Continuous Dynamical Systems, 2012, 32 (1) : 27-40. doi: 10.3934/dcds.2012.32.27

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (89)
  • HTML views (193)
  • Cited by (0)

Other articles
by authors

[Back to Top]