\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Unique solvability of elliptic problems associated with two-phase incompressible flows in unbounded domains

  • * Corresponding author: Xin Zhang

    * Corresponding author: Xin Zhang

TThe first author was supported by JSPS KAKENHI Grant Number JP17K14224, and the second author was supported by the Top Global University Project

Abstract Full Text(HTML) Related Papers Cited by
  • This paper shows the unique solvability of elliptic problems associated with two-phase incompressible flows, which are governed by the two-phase Navier-Stokes equations with a sharp moving interface, in unbounded domains such as the whole space separated by a compact interface and the whole space separated by a non-compact interface. As a by-product, we obtain the Helmholtz-Weyl decomposition for two-phase incompressible flows.

    Mathematics Subject Classification: Primary: 35Q30; Secondary: 76D07.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] T. Abe and Y. Shibata, On a gresolvent estimate of the Stokes equation on an infinite layer. II. $\lambda = 0$ case, J. Math. Fluid Mech., 5 (2003), 245-274.  doi: 10.1007/s00021-003-0075-5.
    [2] H. Abels, Generalized Stokes resolvent equations in an infinite layer with mixed boundary conditions, Math. Nachr., 279 (2006), 351-367.  doi: 10.1002/mana.200310365.
    [3] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Pure and Applied Mathematics, 140, $2^{nd}$ edition, Elsevier/Academic Press, Amsterdam, 2003.
    [4] E. DiBenedetto, Real Analysis, $2^{nd}$ edition, Birkhäuser Advanced Texts: Basel Textbooks, Birkhäuser, 2016. doi: 10.1007/978-1-4939-4005-9.
    [5] E. FabesO. Mendez and M. Mitrea., Boundary layers on Sobolev-Besov spaces and Poisson's equation for the Laplacian in Lipschitz domains, J. Funct. Anal., 159 (1998), 323-368.  doi: 10.1006/jfan.1998.3316.
    [6] R. FarwigH. Kozono and H. Sohr, An $L^q$-approach to Stokes and Navier-Stokes equations in general domains, Acta Math., 195 (2005), 21-53.  doi: 10.1007/BF02588049.
    [7] R. FarwigH. Kozono and H. Sohr, On the Helmholtz decomposition in general unbounded domains, Arch. Math. (Basel), 88 (2007), 239-248.  doi: 10.1007/s00013-006-1910-8.
    [8] R. Farwig and H. Sohr, Generalized resolvent estimates for the Stokes system in bounded and unbounded domains, J. Math. Soc. Japan, 46 (1994), 607-643.  doi: 10.2969/jmsj/04640607.
    [9] R. Farwig and H. Sohr, Helmholtz decomposition and Stokes resolvent system for aperture domains in $L^q$-spaces, Analysis, 16 (1996), 1-26.  doi: 10.1524/anly.1996.16.1.1.
    [10] D. Fujiwara and H. Morimoto, An $L_{r}$-theorem of the Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 24 (1977), 685-700. 
    [11] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems, $2^{nd}$ edition, Springer Monogr. Math. Springer, New York, 2011. doi: 10.1007/978-0-387-09620-9.
    [12] J. Geng and Z. Shen, The Neumann problem and Helmholtz decomposition in convex domains, J. Funct. Anal., 259 (2010), 2147-2164.  doi: 10.1016/j.jfa.2010.07.005.
    [13] M. Köhne, J. Prüss, and M. Wilke, Qualitative behaviour of solutions for the two-phase Navier-Stokes equations with surface tension, Math. Ann., 356 (2013), 737-792. doi: 10.1007/s00208-012-0860-7.
    [14] S. Maryani and H. Saito, On the $\mathcal{R}$-boundedness of solution operator families for two-phase Stokes resolvent equations, Differential Integral Equations, 30 (2017), 1-52. 
    [15] V. N. Maslennikova and M. E. Bogovskiǐ, Elliptic boundary value problems in unbounded domains with noncompact and nonsmooth boundaries, Rend. Sem. Mat. Fis. Milano, 56 (1986), 125-138.  doi: 10.1007/BF02925141.
    [16] T. Miyakawa, On nonstationary solutions of the Navier-Stokes equations in an exterior domain, Hiroshima Math. J., 12 (1982), 115-140.  doi: 10.32917/hmj/1206133879.
    [17] T. Miyakawa, The Helmholtz decomposition of vector fields in some unbounded domains, Math. J. Toyama Univ., 17 (1994), 115-149. 
    [18] J. Prüss and G. Simonett, Moving Interfaces and Quasilinear Parabolic Evolution Equations, Monographs in Mathematics, 105, Birkhäuser/Springer, Cham, 2016. doi: 10.1007/978-3-319-27698-4.
    [19] H. Saito, Global solvability of the Navier-Stokes equations with a free surface in the maximal $L_p$-$L_q$ regularity class, J. Differential Equations, 264 (2018), 1475-1520.  doi: 10.1016/j.jde.2017.09.045.
    [20] H. SaitoY. Shibata and X. Zhang, Some free boundary problem for two phase inhomogeneous incompressible flow, SIAM J. Math. Anal., 52 (2020), 3397-3443.  doi: 10.1137/18M1225239.
    [21] K. Schade and Y. Shibata, On strong dynamics of compressible nematic liquid crystals, SIAM J. Math. Anal., 47(5) (2015), 3963-3992.  doi: 10.1137/140970628.
    [22] Y. Shibata, Introduction to the Mathematical Theory of Fluid Mechanics (Japanese), in press.
    [23] Y. Shibata, Generalized resolvent estimates of the Stokes equations with first order boundary condition in a general domain, J. Math. Fluid Mech., 15 (2013), 1-40.  doi: 10.1007/s00021-012-0130-1.
    [24] Y. Shibata, On the local wellposedness of free boundary problem for the {N}avier-Stokes equations in an exterior domain, Commun. Pure Appl. Anal., 17 (2018), 1681-1721.  doi: 10.3934/cpaa.2018081.
    [25] Y. Shibata and S. Shimizu, On the maximal ${L}_p$-${L}_q$ regularity of the Stokes problem with first order boundary condition; model problems, J. Math. Soc. Japan, 64 (2012), 561-626.  doi: 10.2969/jmsj/06420561.
    [26] C. G. Simader and H. Sohr, A new approach to the Helmholtz decomposition and the Neumann problem in $L^q$-spaces for bounded and exterior domains, in Mathematical Problems Relating to the Navier-Stokes Equation, Ser. Adv. Math. Appl. Sci., 11, World Sci. Publ., River Edge, NJ, 1992, 1-35. doi: 10.1142/9789814503594_0001.
    [27] C. G. Simader and H. Sohr, The Dirichlet Problem for the Laplacian in Bounded and Unbounded Domains, Pitman Research Notes in Mathematics Series, 360, Longman, Harlow, 1996.
    [28] H. Sohr, The Navier-Stokes Equations, An elementary functional analytic approach, Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, 2013.
    [29] V. A. Solonnikov, Estimates of the solutions of the nonstationary Navier-Stokes system, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 38 (1973), 153-231. 
    [30] S. Szufla, On the Hammerstein integral equation with weakly singular kernel, Funkcial. Ekvac., 34 (1991), 279-285. 
    [31] H. Weyl, The method of orthogonal projection in potential theory, Duke Math. J., 7 (1940), 411-444.  doi: 10.1215/S0012-7094-40-00725-6.
  • 加载中
SHARE

Article Metrics

HTML views(584) PDF downloads(223) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return