October  2021, 41(10): 4645-4666. doi: 10.3934/dcds.2021052

A new approach to MGT-thermoviscoelasticity

1. 

Politecnico di Milano - Dipartimento di Matematica, Via Bonardi 9, 20133 Milano, Italy

2. 

Universitat de Girona - Departament d'Informàtica, Matemàtica Aplicada i Estadística, C. Maria Aurèlia Capmany, 41 (Campus Montilivi), 17003 Girona, Spain

3. 

Universitat Politècnica de Catalunya - Departament de Matemàtiques, C. Colom 11, 08222 Terrassa, Barcelona, Spain

* Corresponding author: Monica Conti

Received  September 2020 Revised  January 2021 Published  October 2021 Early access  April 2021

In this paper we discuss some thermoelastic and thermoviscoelastic models obtained from the Gurtin theory, based on the invariance of the entropy under time reversal. We derive differential systems where the temperature and the velocity are ruled by generalized versions of the Moore-Gibson-Thompson equation. In the one-dimensional case, we provide a complete analysis of the evolution, establishing an existence and uniqueness result valid for any choice of the constitutive parameters. This result turns out to be new also for the MGT equation itself. Then, under suitable assumptions on the parameters, corresponding to the subcritical regime of the system, we prove the exponential stability of the related semigroup.

Citation: Monica Conti, Vittorino Pata, Marta Pellicer, Ramon Quintanilla. A new approach to MGT-thermoviscoelasticity. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4645-4666. doi: 10.3934/dcds.2021052
References:
[1]

R. Borghesani and A. Morro, Relaxation functions and time-reversal invariance in thermal and electric conduction, Ann. Mat. Pura Appl., 114 (1977), 271-288.  doi: 10.1007/BF02413790.

[2]

F. Bucci and L. Pandolfi, On the regularity of solutions to the Moore-Gibson-Thompson equation: A perspective via wave equations with memory, J. Evol. Equ., 20 (2020), 837-867.  doi: 10.1007/s00028-019-00549-x.

[3]

J. A. ConejeroC. Lizama and F. Ródenas, Chaotic behaviour of the solutions of the Moore-Gibson-Thompson equation, Appl. Math. Inf. Sci., 9 (2015), 2233-2238.  doi: 10.12785/amis.

[4]

M. ContiV. PataM. Pellicer and R. Quintanilla, On the analyticity of the MGT-viscoelastic plate with heat conduction, J. Differential Equations, 269 (2020), 7862-7880.  doi: 10.1016/j.jde.2020.05.043.

[5]

M. ContiV. Pata and R. Quintanilla, Thermoelasticity of Moore-Gibson-Thompson type with history dependence in the temperature, Asymptot. Anal., 120 (2020), 1-21.  doi: 10.3233/ASY-191576.

[6]

F. Dell'OroI. Lasiecka and V. Pata, The Moore-Gibson-Thompson equation with memory in the critical case, J. Differential Equations, 261 (2016), 4188-4222.  doi: 10.1016/j.jde.2016.06.025.

[7]

F. Dell'Oro and V. Pata, On the Moore-Gibson-Thompson equation and its relation to linear viscoelasticity, Appl. Math. Optim., 76 (2017), 641-655.  doi: 10.1007/s00245-016-9365-1.

[8]

F. Dell'Oro and V. Pata, On a fourth-order equation of Moore-Gibson-Thompson type, Milan J. Math., 85 (2017), 215-234.  doi: 10.1007/s00032-017-0270-0.

[9]

G. C. Gorain, Stabilization for the vibrations modeled by the standard linear model of viscoelasticity, Proc. Indian Acad. Sci. (Math. Sci.), 4 (2010), 495-506.  doi: 10.1007/s12044-010-0038-8.

[10]

A. E. Green and K. A. Lindsay, Thermoelasticity, J. Elasticity, 2 (1972), 1-7. 

[11]

A. E. Green and P. M. Naghdi, On undamped heat waves in an elastic solid, J. Thermal Stresses, 15 (1992), 253-264.  doi: 10.1080/01495739208946136.

[12]

A. E. Green and P. M. Naghdi, Thermoelasticity without energy dissipation, J. Elasticity, 31 (1993), 189-208.  doi: 10.1007/BF00044969.

[13]

A. E. Green and P. M. Naghdi, A unified procedure for contruction of theories of deformable media. I. Classical continuum physics, Proc. Royal Society London A, 448 (1995), 335-356.  doi: 10.1098/rspa.1995.0020.

[14]

A. E. Green and P. M. Naghdi, A unified procedure for contruction of theories of deformable media. II. Generalized continua, Proc. Royal Society London A, 448 (1995), 357-377.  doi: 10.1098/rspa.1995.0021.

[15]

A. E. Green and P. M. Naghdi, A unified procedure for contruction of theories of deformable media. III. Mixtures of interacting continua, Proc. Royal Society London A, 448 (1995), 379-388.  doi: 10.1098/rspa.1995.0022.

[16]

M. E. Gurtin, Time-reversal and symmetry in the thermodynamics of materials with memory, Arch. Rational Mech. Anal., 44 (1971/72), 387-399.  doi: 10.1007/BF00249968.

[17]

D. Ieȿan, On the theory of thermoelasticity without energy dissipation, J. Thermal Stresses, 21 (1998), 295-307.  doi: 10.1080/01495739808956148.

[18]

D. Ieȿan, Thermopiezoelectricity without energy dissipation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 464 (2008), 631-656.  doi: 10.1098/rspa.2007.0264.

[19]

D. Ieȿan and A. Scalia, Some theorems in the theory of thermoviscoelasticity, J. Thermal Stresses, 12 (1989), 225-239.  doi: 10.1080/01495738908961963.

[20]

R. J. Knops and E. W. Wilkes, Theory of Elastic Stability, Encyclopedia of Physics VIa/3, Springer-Verlag, Berlin, 1973,125-302.

[21]

B. KaltenbacherI. Lasiecka and R. Marchand, Wellposedness and exponential decay rates for the Moore-Gibson-Thompson equation arising in high intensity ultrasound, Control Cybernet., 40 (2011), 971-988. 

[22]

I. Lasiecka and X. Wang, Moore-Gibson-Thompson equation with memory, part II: General decay of energy, J. Differential Equations, 259 (2015), 7610-7635.  doi: 10.1016/j.jde.2015.08.052.

[23]

M. C. LeseduarteA. Magaña and R. Quintanilla, On the time decay of solutions in porous-thermo-elasticity of type II, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 375-391.  doi: 10.3934/dcdsb.2010.13.375.

[24]

H. W. Lord and Y. Shulman, A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids, 15 (1967), 299-309. 

[25]

A. Magaña and R. Quintanilla, On the existence and uniqueness in phase-lag thermoelasticity, Meccanica, 53 (2018), 125-134.  doi: 10.1007/s11012-017-0727-9.

[26]

R. MarchandT. McDevitt and R. Triggiani, An abstract semigroup approach to the third order Moore-Gibson-Thompson partial differential equation arising in high-intensity ultrasound: Structural decomposition, spectral analysis, exponential stability, Math. Methods Appl. Sci., 35 (2012), 1896-1929.  doi: 10.1002/mma.1576.

[27]

A. Miranville and R. Quintanilla, Exponential decay in one-dimensional type II thermoviscoelasticity with voids, J. Comput. Appl. Math., 368 (2020), n.112573. doi: 10.1016/j.cam.2019.112573.

[28]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[29]

M. Pellicer and R. Quintanilla, On uniqueness and instability for some thermoemechanical problems involving the Moore-Gibson-Thompson equation, Z. Angew. Math. Phys, 71 (2020). doi: 10.1007/s00033-020-01307-7.

[30]

M. Pellicer and B. Said-Houari, Wellposedness and decay rates for the Cauchy problem of the Moore-Gibson-Thompson equation arising in high intensity ultrasound, Appl. Math. Optim., 80 (2019), 447-479.  doi: 10.1007/s00245-017-9471-8.

[31]

M. Pellicer and J. Solà-Morales, Optimal scalar products in the Moore-Gibson-Thompson equation, Evol. Equ. Control Theory, 8 (2019), 203-220.  doi: 10.3934/eect.2019011.

[32]

J. Prüss, On the spectrum of ${C}_{0}$-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857. doi: 10.2307/1999112.

[33]

R. Quintanilla, Moore-Gibson-Thompson thermoelasticity, Math. Mech. Solids, 24 (2019), 4020-4031.  doi: 10.1177/1081286519862007.

[34]

A. E. Taylor, Introduction to Functional Analysis, John Wiley & Sons, New York, 1958.

[35]

P. A. Thompson, Compressible-Fluid Dynamics, McGraw-Hill, New York, 1972.

show all references

References:
[1]

R. Borghesani and A. Morro, Relaxation functions and time-reversal invariance in thermal and electric conduction, Ann. Mat. Pura Appl., 114 (1977), 271-288.  doi: 10.1007/BF02413790.

[2]

F. Bucci and L. Pandolfi, On the regularity of solutions to the Moore-Gibson-Thompson equation: A perspective via wave equations with memory, J. Evol. Equ., 20 (2020), 837-867.  doi: 10.1007/s00028-019-00549-x.

[3]

J. A. ConejeroC. Lizama and F. Ródenas, Chaotic behaviour of the solutions of the Moore-Gibson-Thompson equation, Appl. Math. Inf. Sci., 9 (2015), 2233-2238.  doi: 10.12785/amis.

[4]

M. ContiV. PataM. Pellicer and R. Quintanilla, On the analyticity of the MGT-viscoelastic plate with heat conduction, J. Differential Equations, 269 (2020), 7862-7880.  doi: 10.1016/j.jde.2020.05.043.

[5]

M. ContiV. Pata and R. Quintanilla, Thermoelasticity of Moore-Gibson-Thompson type with history dependence in the temperature, Asymptot. Anal., 120 (2020), 1-21.  doi: 10.3233/ASY-191576.

[6]

F. Dell'OroI. Lasiecka and V. Pata, The Moore-Gibson-Thompson equation with memory in the critical case, J. Differential Equations, 261 (2016), 4188-4222.  doi: 10.1016/j.jde.2016.06.025.

[7]

F. Dell'Oro and V. Pata, On the Moore-Gibson-Thompson equation and its relation to linear viscoelasticity, Appl. Math. Optim., 76 (2017), 641-655.  doi: 10.1007/s00245-016-9365-1.

[8]

F. Dell'Oro and V. Pata, On a fourth-order equation of Moore-Gibson-Thompson type, Milan J. Math., 85 (2017), 215-234.  doi: 10.1007/s00032-017-0270-0.

[9]

G. C. Gorain, Stabilization for the vibrations modeled by the standard linear model of viscoelasticity, Proc. Indian Acad. Sci. (Math. Sci.), 4 (2010), 495-506.  doi: 10.1007/s12044-010-0038-8.

[10]

A. E. Green and K. A. Lindsay, Thermoelasticity, J. Elasticity, 2 (1972), 1-7. 

[11]

A. E. Green and P. M. Naghdi, On undamped heat waves in an elastic solid, J. Thermal Stresses, 15 (1992), 253-264.  doi: 10.1080/01495739208946136.

[12]

A. E. Green and P. M. Naghdi, Thermoelasticity without energy dissipation, J. Elasticity, 31 (1993), 189-208.  doi: 10.1007/BF00044969.

[13]

A. E. Green and P. M. Naghdi, A unified procedure for contruction of theories of deformable media. I. Classical continuum physics, Proc. Royal Society London A, 448 (1995), 335-356.  doi: 10.1098/rspa.1995.0020.

[14]

A. E. Green and P. M. Naghdi, A unified procedure for contruction of theories of deformable media. II. Generalized continua, Proc. Royal Society London A, 448 (1995), 357-377.  doi: 10.1098/rspa.1995.0021.

[15]

A. E. Green and P. M. Naghdi, A unified procedure for contruction of theories of deformable media. III. Mixtures of interacting continua, Proc. Royal Society London A, 448 (1995), 379-388.  doi: 10.1098/rspa.1995.0022.

[16]

M. E. Gurtin, Time-reversal and symmetry in the thermodynamics of materials with memory, Arch. Rational Mech. Anal., 44 (1971/72), 387-399.  doi: 10.1007/BF00249968.

[17]

D. Ieȿan, On the theory of thermoelasticity without energy dissipation, J. Thermal Stresses, 21 (1998), 295-307.  doi: 10.1080/01495739808956148.

[18]

D. Ieȿan, Thermopiezoelectricity without energy dissipation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 464 (2008), 631-656.  doi: 10.1098/rspa.2007.0264.

[19]

D. Ieȿan and A. Scalia, Some theorems in the theory of thermoviscoelasticity, J. Thermal Stresses, 12 (1989), 225-239.  doi: 10.1080/01495738908961963.

[20]

R. J. Knops and E. W. Wilkes, Theory of Elastic Stability, Encyclopedia of Physics VIa/3, Springer-Verlag, Berlin, 1973,125-302.

[21]

B. KaltenbacherI. Lasiecka and R. Marchand, Wellposedness and exponential decay rates for the Moore-Gibson-Thompson equation arising in high intensity ultrasound, Control Cybernet., 40 (2011), 971-988. 

[22]

I. Lasiecka and X. Wang, Moore-Gibson-Thompson equation with memory, part II: General decay of energy, J. Differential Equations, 259 (2015), 7610-7635.  doi: 10.1016/j.jde.2015.08.052.

[23]

M. C. LeseduarteA. Magaña and R. Quintanilla, On the time decay of solutions in porous-thermo-elasticity of type II, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 375-391.  doi: 10.3934/dcdsb.2010.13.375.

[24]

H. W. Lord and Y. Shulman, A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids, 15 (1967), 299-309. 

[25]

A. Magaña and R. Quintanilla, On the existence and uniqueness in phase-lag thermoelasticity, Meccanica, 53 (2018), 125-134.  doi: 10.1007/s11012-017-0727-9.

[26]

R. MarchandT. McDevitt and R. Triggiani, An abstract semigroup approach to the third order Moore-Gibson-Thompson partial differential equation arising in high-intensity ultrasound: Structural decomposition, spectral analysis, exponential stability, Math. Methods Appl. Sci., 35 (2012), 1896-1929.  doi: 10.1002/mma.1576.

[27]

A. Miranville and R. Quintanilla, Exponential decay in one-dimensional type II thermoviscoelasticity with voids, J. Comput. Appl. Math., 368 (2020), n.112573. doi: 10.1016/j.cam.2019.112573.

[28]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[29]

M. Pellicer and R. Quintanilla, On uniqueness and instability for some thermoemechanical problems involving the Moore-Gibson-Thompson equation, Z. Angew. Math. Phys, 71 (2020). doi: 10.1007/s00033-020-01307-7.

[30]

M. Pellicer and B. Said-Houari, Wellposedness and decay rates for the Cauchy problem of the Moore-Gibson-Thompson equation arising in high intensity ultrasound, Appl. Math. Optim., 80 (2019), 447-479.  doi: 10.1007/s00245-017-9471-8.

[31]

M. Pellicer and J. Solà-Morales, Optimal scalar products in the Moore-Gibson-Thompson equation, Evol. Equ. Control Theory, 8 (2019), 203-220.  doi: 10.3934/eect.2019011.

[32]

J. Prüss, On the spectrum of ${C}_{0}$-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857. doi: 10.2307/1999112.

[33]

R. Quintanilla, Moore-Gibson-Thompson thermoelasticity, Math. Mech. Solids, 24 (2019), 4020-4031.  doi: 10.1177/1081286519862007.

[34]

A. E. Taylor, Introduction to Functional Analysis, John Wiley & Sons, New York, 1958.

[35]

P. A. Thompson, Compressible-Fluid Dynamics, McGraw-Hill, New York, 1972.

[1]

Arthur Henrique Caixeta, Irena Lasiecka, Valéria Neves Domingos Cavalcanti. On long time behavior of Moore-Gibson-Thompson equation with molecular relaxation. Evolution Equations and Control Theory, 2016, 5 (4) : 661-676. doi: 10.3934/eect.2016024

[2]

Luciano Abadías, Carlos Lizama, Marina Murillo-Arcila. Hölder regularity for the Moore-Gibson-Thompson equation with infinite delay. Communications on Pure and Applied Analysis, 2018, 17 (1) : 243-265. doi: 10.3934/cpaa.2018015

[3]

Marta Pellicer, Joan Solà-Morales. Optimal scalar products in the Moore-Gibson-Thompson equation. Evolution Equations and Control Theory, 2019, 8 (1) : 203-220. doi: 10.3934/eect.2019011

[4]

Hizia Bounadja, Belkacem Said Houari. Decay rates for the Moore-Gibson-Thompson equation with memory. Evolution Equations and Control Theory, 2021, 10 (3) : 431-460. doi: 10.3934/eect.2020074

[5]

Wenjun Liu, Zhijing Chen, Zhiyu Tu. New general decay result for a fourth-order Moore-Gibson-Thompson equation with memory. Electronic Research Archive, 2020, 28 (1) : 433-457. doi: 10.3934/era.2020025

[6]

Salah Boulaaras, Abdelbaki Choucha, Djamel Ouchenane, Mohamed Abdalla, Aldo Jonathan Muñoz Vazquez. Solvability of the Moore-Gibson-Thompson equation with viscoelastic memory type II and integral condition. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022151

[7]

Sen Ming, Han Yang, Xiongmei Fan. Formation of singularities of solutions to the Cauchy problem for semilinear Moore-Gibson-Thompson equations. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1773-1792. doi: 10.3934/cpaa.2022046

[8]

Wenhui Chen, Alessandro Palmieri. Nonexistence of global solutions for the semilinear Moore – Gibson – Thompson equation in the conservative case. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5513-5540. doi: 10.3934/dcds.2020236

[9]

Wenhui Chen, Alessandro Palmieri. A blow – up result for the semilinear Moore – Gibson – Thompson equation with nonlinearity of derivative type in the conservative case. Evolution Equations and Control Theory, 2021, 10 (4) : 673-687. doi: 10.3934/eect.2020085

[10]

Belkacem Said-Houari. Global well-posedness of the Cauchy problem for the Jordan–Moore–Gibson–Thompson equation with arbitrarily large higher-order Sobolev norms. Discrete and Continuous Dynamical Systems, 2022, 42 (9) : 4615-4635. doi: 10.3934/dcds.2022066

[11]

Vladimir E. Fedorov, Natalia D. Ivanova. Identification problem for a degenerate evolution equation with overdetermination on the solution semigroup kernel. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 687-696. doi: 10.3934/dcdss.2016022

[12]

Ramon Quintanilla, Reinhard Racke. Stability in thermoelasticity of type III. Discrete and Continuous Dynamical Systems - B, 2003, 3 (3) : 383-400. doi: 10.3934/dcdsb.2003.3.383

[13]

Fatiha Alabau-Boussouira, Piermarco Cannarsa. A constructive proof of Gibson's stability theorem. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 611-617. doi: 10.3934/dcdss.2013.6.611

[14]

Leif Arkeryd, Raffaele Esposito, Rossana Marra, Anne Nouri. Exponential stability of the solutions to the Boltzmann equation for the Benard problem. Kinetic and Related Models, 2012, 5 (4) : 673-695. doi: 10.3934/krm.2012.5.673

[15]

Margareth S. Alves, Rodrigo N. Monteiro. Stability of non-classical thermoelasticity mixture problems. Communications on Pure and Applied Analysis, 2020, 19 (10) : 4879-4898. doi: 10.3934/cpaa.2020216

[16]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[17]

Belkacem Said-Houari, Radouane Rahali. Asymptotic behavior of the solution to the Cauchy problem for the Timoshenko system in thermoelasticity of type III. Evolution Equations and Control Theory, 2013, 2 (2) : 423-440. doi: 10.3934/eect.2013.2.423

[18]

César Augusto Bortot, Wellington José Corrêa, Ryuichi Fukuoka, Thales Maier Souza. Exponential stability for the locally damped defocusing Schrödinger equation on compact manifold. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1367-1386. doi: 10.3934/cpaa.2020067

[19]

Lina Wang, Xueli Bai, Yang Cao. Exponential stability of the traveling fronts for a viscous Fisher-KPP equation. Discrete and Continuous Dynamical Systems - B, 2014, 19 (3) : 801-815. doi: 10.3934/dcdsb.2014.19.801

[20]

Yanbin Tang, Ming Wang. A remark on exponential stability of time-delayed Burgers equation. Discrete and Continuous Dynamical Systems - B, 2009, 12 (1) : 219-225. doi: 10.3934/dcdsb.2009.12.219

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (230)
  • HTML views (179)
  • Cited by (0)

[Back to Top]