October  2021, 41(10): 4667-4704. doi: 10.3934/dcds.2021053

Differentiable invariant manifolds of nilpotent parabolic points

1. 

Departament de Matemàtiques, Universitat Autònoma de Barcelona (UAB), Barcelona Graduate School of Mathematics (BGSMath), 08193 Bellaterra, Spain

2. 

Departament de Matemàtiques i Informàtica, Universitat de Barcelona (UB), Barcelona Graduate School of Mathematics (BGSMath), Gran Via 585. 08007 Barcelona, Spain

Received  October 2020 Revised  February 2021 Published  October 2021 Early access  April 2021

Fund Project: The first author has been partially supported by the Spanish Government grants MTM2016-77278-P (MINECO/ FEDER, UE), PID2019-104658GB-I00 (MICINN/FEDER, UE) and BES-2017-081570, and by the Catalan Government grant 2017-SGR-1617. The second author has been partially supported by the Spanish Government grants MTM2016-80117-P (MINECO/ FEDER, UE) and PID2019-104851GB-I00 (MICINN/FEDER, UE) and by the Catalan Government grant 2017-SGR-1374

We consider a map $ F $ of class $ C^r $ with a fixed point of parabolic type whose differential is not diagonalizable, and we study the existence and regularity of the invariant manifolds associated with the fixed point using the parameterization method. Concretely, we show that under suitable conditions on the coefficients of $ F $, there exist invariant curves of class $ C^r $ away from the fixed point, and that they are analytic when $ F $ is analytic. The differentiability result is obtained as an application of the fiber contraction theorem. We also provide an algorithm to compute an approximation of a parameterization of the invariant curves and a normal form of the restricted dynamics of $ F $ on them.

Citation: Clara Cufí-Cabré, Ernest Fontich. Differentiable invariant manifolds of nilpotent parabolic points. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4667-4704. doi: 10.3934/dcds.2021053
References:
[1]

I. Baldomá and E. Fontich, Stable manifolds associated to fixed points with linear part equal to identity, J. Differential Equations 197 (2004), no. 1, 45-72. doi: 10.1016/j.jde.2003.07.005.

[2]

I. Baldomá, E. Fontich, R. de la Llave and P. Martín, The parameterization method for one-dimensional invariant manifolds of higher dimensional parabolic fixed points, Discrete Contin. Dyn. Syst. 17 (2007), no. 4,835-865. doi: 10.3934/dcds.2007.17.835.

[3]

I. Baldomá, E. Fontich and P. Martín, Gevrey estimates for one dimensional parabolic invariant manifolds of non-hyperbolic fixed points, Discrete Contin. Dyn. Syst. 37 (2017), no. 8, 4159-4190. doi: 10.3934/dcds.2017177.

[4]

I. Baldomá, E. Fontich and P. Martín, Invariant manifolds of parabolic fixed points (I). Existence and dependence on parameters, J. Differential Equations 268 (2020), no. 9, 5516 -5573. doi: 10.1016/j.jde.2019.11.100.

[5]

I. Baldomá, E. Fontich and P. Martín, Invariant manifolds of parabolic fixed points (II). Approximations by sums of homogeneous functions, J. Differential Equations 268 (2020), no. 9, 5574-5627. doi: 10.1016/j.jde.2019.11.099.

[6]

R. I. Bogdanov, Versal deformations of a singular point of a vector field on the plane in the case of zero eigenvalues, Funct. Anal. Appl. 9 (1975), 144-145.

[7]

X. Cabré, E. Fontich and R. de la Llave, The parameterization method for invariant manifolds I: Manifolds associated to non-resonant subspaces, Indiana Univ. Math. J. 52 (2003), no. 2,283-328. doi: 10.1512/iumj.2003.52.2245.

[8]

X. Cabré, E. Fontich and R. de la Llave, The parameterization method for invariant manifolds II: Regularity with respect to parameters, Indiana Univ. Math. J. 52 (2003), no. 2,329-360. doi: 10.1512/iumj.2003.52.2407.

[9]

X. Cabré, E. Fontich and R. de la Llave, The parameterization method for invariant manifolds III: overview and applications, J. Differential Equations 218 (2005), no. 2,444-515. doi: 10.1016/j.jde.2004.12.003.

[10]

J. Casasayas, E. Fontich and A. Nunes, Invariant manifolds for a class of parabolic points, Nonlinearity 5 (1992), no. 5, 1193-1210. doi: 10.1088/0951-7715/5/5/008.

[11]

S. Craig, F. Diacu, E. A. Lacomba and E. Pérez, On the anisotropic Manev problem, J. Math. Phys. 40 (1999), no. 3, 1359-1375. doi: 10.1063/1.532807.

[12]

E. Fontich, Stable curves asymptotic to a degenerate fixed point, Nonlinear Anal. 35 (1999), no. 6, Ser. A: Theory Methods, 711-733. doi: 10.1016/S0362-546X(98)00004-2.

[13]

E. Fontich and P. Martín, Differentiable invariant manifolds for partially hyperbolic tori and a lambda lemma, Nonlinearity 13 (2000), no. 5, 1561-1593. doi: 10.1088/0951-7715/13/5/309.

[14]

V. J. García-Garrido, M. Agaoglou and S. Wiggins, Exploring isomerization dynamics on a potential energy surface with an index-2 saddle using Lagrangian descriptors, Commun. Nonlinear Sci. Numer. Simul. 89 (2020), 105-331. doi: 10.1016/j.cnsns.2020.105331.

[15]

R. Guantes, F. Borondo and S. Miret-Artés, Periodic orbits and the homoclinic tangle in atom-surface chaotic scattering, Phys. Rev. E 56 (1997), 378-389. doi: 10.1103/PhysRevE.56.378.

[16]

M. Guardia, P. Martín and T. M-Seara, Oscillatory motions for the restricted planar circular three body problem, Invent. Math. 203 (2016), no. 2,417-492. doi: 10.1007/s00222-015-0591-y.

[17]

M. Guardia, P. Martín, T. M-Seara and L. Sabbagh, Oscillatory orbits in the restricted elliptic planar three body problem, Discrete Contin. Dyn. Syst. 37 (2017), no. 1,229-256. doi: 10.3934/dcds.2017009.

[18]

À. Haro, M. Canadell, J. Ll. Figueras, A. Luque and J. M. Mondelo, The Parameterization Method for Invariant Manifolds. From Rigorous Results to Effective Computations, Applied Mathematical Sciences, 195, Springer, 2016. doi: 10.1007/978-3-319-29662-3.

[19]

W. T. Jamieson and O. Merino, Local dynamics of planar maps with a non-isolated fixed point exhibiting 1-1 resonance, Adv. Difference Equ., (2018), Paper No. 142, 22 pp. doi: 10.1186/s13662-018-1595-x.

[20]

L. M. Lerman and J. D. Meiss, Mixed dynamics in a parabolic standard map, Phys. D, 315 (2016), 58-71.  doi: 10.1016/j.physd.2015.09.003.

[21]

J. Llibre and C. Simó, Oscillatory solutions in the planar restricted three-body problem, Math. Ann., 248 (1980), 153-184.  doi: 10.1007/BF01421955.

[22]

R. McGehee, A stable manifold theorem for degenerate fixed points with applications to celestial mechanics, J. Differential Equations, 14 (1973), 70-88.  doi: 10.1016/0022-0396(73)90077-6.

[23]

J. Moser, Stable and Random Motions in Dynamical Systems. With Special Emphasis on Celestial Mechanics, Hermann Weyl Lectures, the Institute for Advanced Study, Princeton, N. J.; Annals of Mathematics Studies, 77, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1973.

[24]

Z. Nitecki, Differentiable Dynamics. An Introduction to the Orbit Structure of Diffeomorphisms, The M.I.T. Press, Cambridge, Mass.-London, 1971.

[25]

K. Sitnikov, The existence of oscillatory motions in the three-body problems, Soviet Physics. Dokl., 5 (1960), 647-650. 

[26]

F. Takens, Normal forms for certain singularities of vector fields, Ann. Inst. Fourier (Grenoble), 23 (1973), 163-195.  doi: 10.5802/aif.467.

[27]

F. Takens, Singularities of vector fields, Inst. Hautes Études Sci. Publ. Math., 43 (1974), 47-100.

[28]

S. M. Voronin, Analytic classification of germs of conformal mappings $(\mathbb{C}, 0) \to (\mathbb{C}, 0)$, Funktsional. Anal. i Prilozhen., 15 (1981), 1-17.  doi: 10.1007/BF01082373.

[29]

W. Zhang and W. Zhang, On invariant manifolds and invariant foliations without a spectral gap, Adv. Math., 303 (2016), 549-610.  doi: 10.1016/j.aim.2016.08.027.

show all references

References:
[1]

I. Baldomá and E. Fontich, Stable manifolds associated to fixed points with linear part equal to identity, J. Differential Equations 197 (2004), no. 1, 45-72. doi: 10.1016/j.jde.2003.07.005.

[2]

I. Baldomá, E. Fontich, R. de la Llave and P. Martín, The parameterization method for one-dimensional invariant manifolds of higher dimensional parabolic fixed points, Discrete Contin. Dyn. Syst. 17 (2007), no. 4,835-865. doi: 10.3934/dcds.2007.17.835.

[3]

I. Baldomá, E. Fontich and P. Martín, Gevrey estimates for one dimensional parabolic invariant manifolds of non-hyperbolic fixed points, Discrete Contin. Dyn. Syst. 37 (2017), no. 8, 4159-4190. doi: 10.3934/dcds.2017177.

[4]

I. Baldomá, E. Fontich and P. Martín, Invariant manifolds of parabolic fixed points (I). Existence and dependence on parameters, J. Differential Equations 268 (2020), no. 9, 5516 -5573. doi: 10.1016/j.jde.2019.11.100.

[5]

I. Baldomá, E. Fontich and P. Martín, Invariant manifolds of parabolic fixed points (II). Approximations by sums of homogeneous functions, J. Differential Equations 268 (2020), no. 9, 5574-5627. doi: 10.1016/j.jde.2019.11.099.

[6]

R. I. Bogdanov, Versal deformations of a singular point of a vector field on the plane in the case of zero eigenvalues, Funct. Anal. Appl. 9 (1975), 144-145.

[7]

X. Cabré, E. Fontich and R. de la Llave, The parameterization method for invariant manifolds I: Manifolds associated to non-resonant subspaces, Indiana Univ. Math. J. 52 (2003), no. 2,283-328. doi: 10.1512/iumj.2003.52.2245.

[8]

X. Cabré, E. Fontich and R. de la Llave, The parameterization method for invariant manifolds II: Regularity with respect to parameters, Indiana Univ. Math. J. 52 (2003), no. 2,329-360. doi: 10.1512/iumj.2003.52.2407.

[9]

X. Cabré, E. Fontich and R. de la Llave, The parameterization method for invariant manifolds III: overview and applications, J. Differential Equations 218 (2005), no. 2,444-515. doi: 10.1016/j.jde.2004.12.003.

[10]

J. Casasayas, E. Fontich and A. Nunes, Invariant manifolds for a class of parabolic points, Nonlinearity 5 (1992), no. 5, 1193-1210. doi: 10.1088/0951-7715/5/5/008.

[11]

S. Craig, F. Diacu, E. A. Lacomba and E. Pérez, On the anisotropic Manev problem, J. Math. Phys. 40 (1999), no. 3, 1359-1375. doi: 10.1063/1.532807.

[12]

E. Fontich, Stable curves asymptotic to a degenerate fixed point, Nonlinear Anal. 35 (1999), no. 6, Ser. A: Theory Methods, 711-733. doi: 10.1016/S0362-546X(98)00004-2.

[13]

E. Fontich and P. Martín, Differentiable invariant manifolds for partially hyperbolic tori and a lambda lemma, Nonlinearity 13 (2000), no. 5, 1561-1593. doi: 10.1088/0951-7715/13/5/309.

[14]

V. J. García-Garrido, M. Agaoglou and S. Wiggins, Exploring isomerization dynamics on a potential energy surface with an index-2 saddle using Lagrangian descriptors, Commun. Nonlinear Sci. Numer. Simul. 89 (2020), 105-331. doi: 10.1016/j.cnsns.2020.105331.

[15]

R. Guantes, F. Borondo and S. Miret-Artés, Periodic orbits and the homoclinic tangle in atom-surface chaotic scattering, Phys. Rev. E 56 (1997), 378-389. doi: 10.1103/PhysRevE.56.378.

[16]

M. Guardia, P. Martín and T. M-Seara, Oscillatory motions for the restricted planar circular three body problem, Invent. Math. 203 (2016), no. 2,417-492. doi: 10.1007/s00222-015-0591-y.

[17]

M. Guardia, P. Martín, T. M-Seara and L. Sabbagh, Oscillatory orbits in the restricted elliptic planar three body problem, Discrete Contin. Dyn. Syst. 37 (2017), no. 1,229-256. doi: 10.3934/dcds.2017009.

[18]

À. Haro, M. Canadell, J. Ll. Figueras, A. Luque and J. M. Mondelo, The Parameterization Method for Invariant Manifolds. From Rigorous Results to Effective Computations, Applied Mathematical Sciences, 195, Springer, 2016. doi: 10.1007/978-3-319-29662-3.

[19]

W. T. Jamieson and O. Merino, Local dynamics of planar maps with a non-isolated fixed point exhibiting 1-1 resonance, Adv. Difference Equ., (2018), Paper No. 142, 22 pp. doi: 10.1186/s13662-018-1595-x.

[20]

L. M. Lerman and J. D. Meiss, Mixed dynamics in a parabolic standard map, Phys. D, 315 (2016), 58-71.  doi: 10.1016/j.physd.2015.09.003.

[21]

J. Llibre and C. Simó, Oscillatory solutions in the planar restricted three-body problem, Math. Ann., 248 (1980), 153-184.  doi: 10.1007/BF01421955.

[22]

R. McGehee, A stable manifold theorem for degenerate fixed points with applications to celestial mechanics, J. Differential Equations, 14 (1973), 70-88.  doi: 10.1016/0022-0396(73)90077-6.

[23]

J. Moser, Stable and Random Motions in Dynamical Systems. With Special Emphasis on Celestial Mechanics, Hermann Weyl Lectures, the Institute for Advanced Study, Princeton, N. J.; Annals of Mathematics Studies, 77, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1973.

[24]

Z. Nitecki, Differentiable Dynamics. An Introduction to the Orbit Structure of Diffeomorphisms, The M.I.T. Press, Cambridge, Mass.-London, 1971.

[25]

K. Sitnikov, The existence of oscillatory motions in the three-body problems, Soviet Physics. Dokl., 5 (1960), 647-650. 

[26]

F. Takens, Normal forms for certain singularities of vector fields, Ann. Inst. Fourier (Grenoble), 23 (1973), 163-195.  doi: 10.5802/aif.467.

[27]

F. Takens, Singularities of vector fields, Inst. Hautes Études Sci. Publ. Math., 43 (1974), 47-100.

[28]

S. M. Voronin, Analytic classification of germs of conformal mappings $(\mathbb{C}, 0) \to (\mathbb{C}, 0)$, Funktsional. Anal. i Prilozhen., 15 (1981), 1-17.  doi: 10.1007/BF01082373.

[29]

W. Zhang and W. Zhang, On invariant manifolds and invariant foliations without a spectral gap, Adv. Math., 303 (2016), 549-610.  doi: 10.1016/j.aim.2016.08.027.

[1]

Inmaculada Baldomá, Ernest Fontich, Rafael de la Llave, Pau Martín. The parameterization method for one- dimensional invariant manifolds of higher dimensional parabolic fixed points. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 835-865. doi: 10.3934/dcds.2007.17.835

[2]

Àlex Haro, Rafael de la Llave. A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Numerical algorithms. Discrete and Continuous Dynamical Systems - B, 2006, 6 (6) : 1261-1300. doi: 10.3934/dcdsb.2006.6.1261

[3]

Qun Lin, Ryan Loxton, Kok Lay Teo. The control parameterization method for nonlinear optimal control: A survey. Journal of Industrial and Management Optimization, 2014, 10 (1) : 275-309. doi: 10.3934/jimo.2014.10.275

[4]

C. M. Groothedde, J. D. Mireles James. Parameterization method for unstable manifolds of delay differential equations. Journal of Computational Dynamics, 2017, 4 (1&2) : 21-70. doi: 10.3934/jcd.2017002

[5]

Rafael de la Llave, Jason D. Mireles James. Parameterization of invariant manifolds by reducibility for volume preserving and symplectic maps. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4321-4360. doi: 10.3934/dcds.2012.32.4321

[6]

George Osipenko. Linearization near a locally nonunique invariant manifold. Discrete and Continuous Dynamical Systems, 1997, 3 (2) : 189-205. doi: 10.3934/dcds.1997.3.189

[7]

J. B. van den Berg, J. D. Mireles James. Parameterization of slow-stable manifolds and their invariant vector bundles: Theory and numerical implementation. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4637-4664. doi: 10.3934/dcds.2016002

[8]

Sho Matsumoto, Jonathan Novak. A moment method for invariant ensembles. Electronic Research Announcements, 2018, 25: 60-71. doi: 10.3934/era.2018.25.007

[9]

Jingxian Sun, Shouchuan Hu. Flow-invariant sets and critical point theory. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 483-496. doi: 10.3934/dcds.2003.9.483

[10]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[11]

Amin Boumenir, Vu Kim Tuan, Nguyen Hoang. The recovery of a parabolic equation from measurements at a single point. Evolution Equations and Control Theory, 2018, 7 (2) : 197-216. doi: 10.3934/eect.2018010

[12]

Hans Koch. A renormalization group fixed point associated with the breakup of golden invariant tori. Discrete and Continuous Dynamical Systems, 2004, 11 (4) : 881-909. doi: 10.3934/dcds.2004.11.881

[13]

Rongjie Lai, Jiang Liang, Hong-Kai Zhao. A local mesh method for solving PDEs on point clouds. Inverse Problems and Imaging, 2013, 7 (3) : 737-755. doi: 10.3934/ipi.2013.7.737

[14]

Zhongyi Huang. Tailored finite point method for the interface problem. Networks and Heterogeneous Media, 2009, 4 (1) : 91-106. doi: 10.3934/nhm.2009.4.91

[15]

Igor Griva, Roman A. Polyak. Proximal point nonlinear rescaling method for convex optimization. Numerical Algebra, Control and Optimization, 2011, 1 (2) : 283-299. doi: 10.3934/naco.2011.1.283

[16]

Nils Ackermann, Thomas Bartsch, Petr Kaplický. An invariant set generated by the domain topology for parabolic semiflows with small diffusion. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 613-626. doi: 10.3934/dcds.2007.18.613

[17]

Tim Hoheisel, Maxime Laborde, Adam Oberman. A regularization interpretation of the proximal point method for weakly convex functions. Journal of Dynamics and Games, 2020, 7 (1) : 79-96. doi: 10.3934/jdg.2020005

[18]

Behrouz Kheirfam, Guoqiang Wang. An infeasible full NT-step interior point method for circular optimization. Numerical Algebra, Control and Optimization, 2017, 7 (2) : 171-184. doi: 10.3934/naco.2017011

[19]

Yanqun Liu. An exterior point linear programming method based on inclusive normal cones. Journal of Industrial and Management Optimization, 2010, 6 (4) : 825-846. doi: 10.3934/jimo.2010.6.825

[20]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial and Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (155)
  • HTML views (183)
  • Cited by (0)

Other articles
by authors

[Back to Top]