• Previous Article
    Variational relations for metric mean dimension and rate distortion dimension
  • DCDS Home
  • This Issue
  • Next Article
    Carleman estimates for a class of variable coefficient degenerate elliptic operators with applications to unique continuation
doi: 10.3934/dcds.2021055

A variational approach to three-phase traveling waves for a gradient system

Department of Mathematics, National Taiwan University, Taipei, 10617, Taiwan

* Corresponding author: Hung-Yu Chien, andy1010@gmail.com

Received  February 2020 Revised  January 2021 Published  March 2021

Fund Project: C.-C. Chen and H.-Y. Chien are supported by the grants 108-2115-M-002-011-MY3 of MOST, Taiwan. C.-C. Huang is supported by the grants 109-2811-M-002-623 and 108-2115-M-002-012-MY2, MOST

In this paper, we use a variational approach to study traveling wave solutions of a gradient system in an infinite strip. As the even-symmetric potential of the system has three local minima, we prove the existence of a traveling wave that propagates from one phase to the other two phases, where these phases corresponds to the three local minima of the potential. To control the asymptotic behavior of the wave at minus infinity, we successfully find a certain convexity condition on the potential, which guarantees the convergence of the wave to a constant state but not to a one-dimensional homoclinic solution or other equilibria. In addition, a non-trivial steady state in $ \mathbb R^2 $ is established by taking a limit of the traveling wave solutions in the strip as the width of the strip tends to infinity.

Citation: Chiun-Chuan Chen, Hung-Yu Chien, Chih-Chiang Huang. A variational approach to three-phase traveling waves for a gradient system. Discrete & Continuous Dynamical Systems, doi: 10.3934/dcds.2021055
References:
[1]

S. AlamaL. Bronsard and C. Gui, Stationary layered solutions in $\mathbb R^2$ for an Allen-Cahn system with multiple well potential, Calculus of Variations and Partial Differential Equations, 5 (1997), 359-390.  doi: 10.1007/s005260050071.  Google Scholar

[2]

F. Alessio, A. Calamai and P. Montecchiari, Saddle-type solutions for a class of semilinear elliptic equations, Adv. Differential Equations, 12 (2007), 361–380, URL http://projecteuclid.org/euclid.ade/1355867455.  Google Scholar

[3]

N. D. Alikakos, On the structure of phase transition maps for three or more coexisting phases, in Geometric Partial Differential Equations Proceedings, CRM Series, 15, Ed. Norm., Pisa, 2013, 1–31. doi: 10.1007/978-88-7642-473-1_1.  Google Scholar

[4]

N. D. Alikakos and G. Fusco, Entire solutions to equivariant elliptic systems with variational structure, Archive for Rational Mechanics and Analysis, 202 (2011), 567-597.  doi: 10.1007/s00205-011-0441-z.  Google Scholar

[5]

N. D. Alikakos and N. I. Katzourakis, Heteroclinic travelling waves of gradient diffusion systems, Transactions of the American Mathematical Society, 363 (2011), 1365-1365.  doi: 10.1090/S0002-9947-2010-04987-6.  Google Scholar

[6]

S. M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metallurgica, 27 (1979), 1085-1095.  doi: 10.1016/0001-6160(79)90196-2.  Google Scholar

[7]

S. Baldo, Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids, Annales Inst. H. Poincaré Anal. Non Linéaire, 7 (1990), 67–90, URL http://eudml.org/doc/78216. doi: 10.1016/S0294-1449(16)30304-3.  Google Scholar

[8]

M. BertschC. B. Muratov and I. Primi, Traveling wave solutions of harmonic heat flow, Calculus of Variations and Partial Differential Equations, 26 (2006), 489-509.  doi: 10.1007/s00526-006-0016-2.  Google Scholar

[9]

F. Béthuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices, Birkhäuser Boston, 1994. doi: 10.1007/978-1-4612-0287-5.  Google Scholar

[10]

F. Béthuel and G. Orlandi, Ginzburg-Landau functionals, phase transitions and vorticity, in Noncompact Problems at the Intersection of Geometry, Analysis, and Topology, Contemp. Math., 350, American Mathematical Society, Providence, RI, 2004, 35–47. doi: 10.1090/conm/350/06336.  Google Scholar

[11]

L. BronsardC. Gui and M. Schatzman, A three-layered minimizer in $\mathbb R^2$ for a variational problem with a symmetric three-well potential, Communications on Pure and Applied Mathematics, 49 (1996), 677-715.  doi: 10.1002/(SICI)1097-0312(199607)49:7<677::AID-CPA2>3.0.CO;2-6.  Google Scholar

[12]

L. Bronsard and F. Reitich, On three-phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation, Archive for Rational Mechanics and Analysis, 124 (1993), 355-379.  doi: 10.1007/BF00375607.  Google Scholar

[13]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, The Journal of Chemical Physics, 28. doi: 10.1002/9781118788295.ch4.  Google Scholar

[14]

C.-N. ChenC.-C. Chen and C.-C. Huang, Traveling waves for the FitzHugh-Nagumo system on an infinite channel, Journal of Differential Equations, 261 (2016), 3010-3041.  doi: 10.1016/j.jde.2016.05.014.  Google Scholar

[15]

C.-N. Chen and Y. S. Choi, Traveling pulse solutions to FitzHugh-Nagumo equations, Calculus of Variations and Partial Differential Equations, 54 (2015), 1-45.  doi: 10.1007/s00526-014-0776-z.  Google Scholar

[16]

X. Chen, Generation and propagation of interfaces for reaction-diffusion equations, Journal of Differential Equations, 96 (1992), 116-141.  doi: 10.1016/0022-0396(92)90146-E.  Google Scholar

[17]

X. ChenJ.-S. GuoF. HamelH. Ninomiya and J.-M. Roquejoffre, Traveling waves with paraboloid like interfaces for balanced bistable dynamics, Annales de l'Institut Henri Poincaré. Annales: Analyse Non Linéaire Analysis, 24 (2007), 369-393.  doi: 10.1016/j.anihpc.2006.03.012.  Google Scholar

[18]

G. Dal Maso, An Introduction to Gamma-Convergence, Progress in Nonlinear Differential Equations and their Applications, 8. Birkhäuser Boston, Inc., Boston, MA, 1993. doi: 10.1007/978-1-4612-0327-8.  Google Scholar

[19]

H. Dang, P. C. Fife and L. A. Peletier, Saddle solutions of the bistable diffusion equation, Zeitschrift für Angewandte Mathematik und Physik ZAMP, 43 (1992), 984–998. doi: 10.1007/BF00916424.  Google Scholar

[20]

P. de Mottoni and M. Schatzman, Geometrical evolution of developed interfaces, Transactions of the American Mathematical Society, 347 (1995), 1533–1589, URL http://www.jstor.org/stable/2154960. doi: 10.1090/S0002-9947-1995-1672406-7.  Google Scholar

[21]

P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions, Archive for Rational Mechanics and Analysis, 65 (1975), 335-361.  doi: 10.1007/BF00250432.  Google Scholar

[22]

D. Gilbarg and N. S. Trudinger, Ellitic Partial Differential Equations of Second Order, 1998 edition, Springer, 2001.  Google Scholar

[23]

C. Gui and M. Schatzman, Symmetric quadruple phase transitions, Indiana University Mathematics Journal, 57 (2008), 781-836.  doi: 10.1512/iumj.2008.57.3089.  Google Scholar

[24]

M. E. Gurtin, On phase transitions with bulk, interfacial, and boundary Energy, Archive for Rational Mechanics and Analysis, 96 (1986), 243-264.  doi: 10.1007/BF00251908.  Google Scholar

[25]

M. E. Gurtin and H. Matano, On the structure of equilibrium phase transitions within the gradient theory of fluids, Quarterly of Applied Mathematics, 46 (1988), 301-317.  doi: 10.1090/qam/950604.  Google Scholar

[26]

F. Hamel, Bistable transition fronts in $\mathbb R^N$, Advances in Mathematics, 289 (2016), 279-344.  doi: 10.1016/j.aim.2015.11.033.  Google Scholar

[27]

F. HamelR. Monneau and J.-M. Roquejoffre, Existence and qualitative properties of multidimensional conical bistable fronts, Discrete and Continuous Dynamical Systems, 13 (2005), 1069-1096.  doi: 10.3934/dcds.2005.13.1069.  Google Scholar

[28]

S. Heinze, A Variational Approach to Traveling Waves, Technical Report 85, Max Planck Institute for Mathematical Sciences. Google Scholar

[29]

C. D. Levermore and J. X. Xin, Multidimensional stability of traveling waves in a bistable reaction-diffusion equation, II, Communications in Partial Differential Equations, 17 (1992), 1901-1924.  doi: 10.1080/03605309208820908.  Google Scholar

[30]

M. LuciaC. B. Muratov and M. Novaga, Existence of traveling waves of invasion for Ginzburg-Landau-type problems in infinite cylinders, Archive for Rational Mechanics and Analysis, 188 (2008), 475-508.  doi: 10.1007/s00205-007-0097-x.  Google Scholar

[31]

H. MatanoM. Nara and M. Taniguchi, Stability of planar waves in the Allen-Cahn equation, Communications in Partial Differential Equations, 34 (2009), 976-1002.  doi: 10.1080/03605300902963500.  Google Scholar

[32]

L. Modica, The gradient theory of phase transitions and the minimal interface criterion., Arch. Ration. Mech. Anal., 98 (1987), 123-142.  doi: 10.1007/BF00251230.  Google Scholar

[33]

Y. Morita and H. Ninomiya, Monostable-type traveling waves of bistable reaction-diffusion equations in the multi-dimensional space, Bulletin of the Institute of Mathematics Academia Sinica (New Series), 3 (2008), 567-584.   Google Scholar

[34]

Y. Morita and H. Ninomiya, Traveling wave solutions and entire solutions of reaction-diffusion equations, Sugaku Expositions, 23 (2010), 213-233.   Google Scholar

[35]

C. B. Muratov and M. Novaga, Front propagation in infinite cylinders. I. A variational approach, Communications in Mathematical Sciences, 6 (2008), 799-826.  doi: 10.4310/CMS.2008.v6.n4.a1.  Google Scholar

[36]

C. B. Muratov, A global variational structure and propagation of disturbances in reaction-diffusion systems of gradient type, Discrete and Continuous Dynamical Systems - Series B, 4 (2004), 867-892.  doi: 10.3934/dcdsb.2004.4.867.  Google Scholar

[37]

H. Ninomiya and M. Taniguchi, Existence and global stability of traveling curved fronts in the Allen-Cahn equations, Journal of Differential Equations, 213 (2005), 204-233.  doi: 10.1016/j.jde.2004.06.011.  Google Scholar

[38]

R. S. Palais, The principle of symmetric criticality, Communications in Mathematical Physics, 69 (1979), 19-30.  doi: 10.1007/BF01941322.  Google Scholar

[39]

P. Sternberg, Vector-Valued local minimizers of nonconvex variational problems, Rocky Mountain Journal of Mathematics, 21 (1991), 799-807.  doi: 10.1216/rmjm/1181072968.  Google Scholar

[40]

P. Sternberg and W. P. Zeimer, Local minimisers of a three-phase partition problem with triple junctions, Proc. Roy. Soc. Edinburgh Sect. A, 124 (1994), 1059-1073.  doi: 10.1017/S0308210500030110.  Google Scholar

[41]

M. Taniguchi, Traveling fronts of pyramidal shapes in the Allen-Cahn equations, SIAM Journal on Mathematical Analysis, 39 (2007), 319-344.  doi: 10.1137/060661788.  Google Scholar

[42]

M. Taniguchi, The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen-Cahn equations, Journal of Differential Equations, 246 (2009), 2103-2130.  doi: 10.1016/j.jde.2008.06.037.  Google Scholar

[43]

M. Taniguchi, An $(N-1)$-dimensional convex compact set gives an $N$-dimensional traveling front in the Allen-Cahn equation, SIAM Journal on Mathematical Analysis, 47 (2015), 455-476.  doi: 10.1137/130945041.  Google Scholar

[44]

M. Taniguchi, Convex compact sets in $R^{N-1}$ give traveling fronts of cooperation-diffusion systems in $R^N$, Journal of Differential Equations, 260 (2016), 4301-4338.  doi: 10.1016/j.jde.2015.11.010.  Google Scholar

show all references

References:
[1]

S. AlamaL. Bronsard and C. Gui, Stationary layered solutions in $\mathbb R^2$ for an Allen-Cahn system with multiple well potential, Calculus of Variations and Partial Differential Equations, 5 (1997), 359-390.  doi: 10.1007/s005260050071.  Google Scholar

[2]

F. Alessio, A. Calamai and P. Montecchiari, Saddle-type solutions for a class of semilinear elliptic equations, Adv. Differential Equations, 12 (2007), 361–380, URL http://projecteuclid.org/euclid.ade/1355867455.  Google Scholar

[3]

N. D. Alikakos, On the structure of phase transition maps for three or more coexisting phases, in Geometric Partial Differential Equations Proceedings, CRM Series, 15, Ed. Norm., Pisa, 2013, 1–31. doi: 10.1007/978-88-7642-473-1_1.  Google Scholar

[4]

N. D. Alikakos and G. Fusco, Entire solutions to equivariant elliptic systems with variational structure, Archive for Rational Mechanics and Analysis, 202 (2011), 567-597.  doi: 10.1007/s00205-011-0441-z.  Google Scholar

[5]

N. D. Alikakos and N. I. Katzourakis, Heteroclinic travelling waves of gradient diffusion systems, Transactions of the American Mathematical Society, 363 (2011), 1365-1365.  doi: 10.1090/S0002-9947-2010-04987-6.  Google Scholar

[6]

S. M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metallurgica, 27 (1979), 1085-1095.  doi: 10.1016/0001-6160(79)90196-2.  Google Scholar

[7]

S. Baldo, Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids, Annales Inst. H. Poincaré Anal. Non Linéaire, 7 (1990), 67–90, URL http://eudml.org/doc/78216. doi: 10.1016/S0294-1449(16)30304-3.  Google Scholar

[8]

M. BertschC. B. Muratov and I. Primi, Traveling wave solutions of harmonic heat flow, Calculus of Variations and Partial Differential Equations, 26 (2006), 489-509.  doi: 10.1007/s00526-006-0016-2.  Google Scholar

[9]

F. Béthuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices, Birkhäuser Boston, 1994. doi: 10.1007/978-1-4612-0287-5.  Google Scholar

[10]

F. Béthuel and G. Orlandi, Ginzburg-Landau functionals, phase transitions and vorticity, in Noncompact Problems at the Intersection of Geometry, Analysis, and Topology, Contemp. Math., 350, American Mathematical Society, Providence, RI, 2004, 35–47. doi: 10.1090/conm/350/06336.  Google Scholar

[11]

L. BronsardC. Gui and M. Schatzman, A three-layered minimizer in $\mathbb R^2$ for a variational problem with a symmetric three-well potential, Communications on Pure and Applied Mathematics, 49 (1996), 677-715.  doi: 10.1002/(SICI)1097-0312(199607)49:7<677::AID-CPA2>3.0.CO;2-6.  Google Scholar

[12]

L. Bronsard and F. Reitich, On three-phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation, Archive for Rational Mechanics and Analysis, 124 (1993), 355-379.  doi: 10.1007/BF00375607.  Google Scholar

[13]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, The Journal of Chemical Physics, 28. doi: 10.1002/9781118788295.ch4.  Google Scholar

[14]

C.-N. ChenC.-C. Chen and C.-C. Huang, Traveling waves for the FitzHugh-Nagumo system on an infinite channel, Journal of Differential Equations, 261 (2016), 3010-3041.  doi: 10.1016/j.jde.2016.05.014.  Google Scholar

[15]

C.-N. Chen and Y. S. Choi, Traveling pulse solutions to FitzHugh-Nagumo equations, Calculus of Variations and Partial Differential Equations, 54 (2015), 1-45.  doi: 10.1007/s00526-014-0776-z.  Google Scholar

[16]

X. Chen, Generation and propagation of interfaces for reaction-diffusion equations, Journal of Differential Equations, 96 (1992), 116-141.  doi: 10.1016/0022-0396(92)90146-E.  Google Scholar

[17]

X. ChenJ.-S. GuoF. HamelH. Ninomiya and J.-M. Roquejoffre, Traveling waves with paraboloid like interfaces for balanced bistable dynamics, Annales de l'Institut Henri Poincaré. Annales: Analyse Non Linéaire Analysis, 24 (2007), 369-393.  doi: 10.1016/j.anihpc.2006.03.012.  Google Scholar

[18]

G. Dal Maso, An Introduction to Gamma-Convergence, Progress in Nonlinear Differential Equations and their Applications, 8. Birkhäuser Boston, Inc., Boston, MA, 1993. doi: 10.1007/978-1-4612-0327-8.  Google Scholar

[19]

H. Dang, P. C. Fife and L. A. Peletier, Saddle solutions of the bistable diffusion equation, Zeitschrift für Angewandte Mathematik und Physik ZAMP, 43 (1992), 984–998. doi: 10.1007/BF00916424.  Google Scholar

[20]

P. de Mottoni and M. Schatzman, Geometrical evolution of developed interfaces, Transactions of the American Mathematical Society, 347 (1995), 1533–1589, URL http://www.jstor.org/stable/2154960. doi: 10.1090/S0002-9947-1995-1672406-7.  Google Scholar

[21]

P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions, Archive for Rational Mechanics and Analysis, 65 (1975), 335-361.  doi: 10.1007/BF00250432.  Google Scholar

[22]

D. Gilbarg and N. S. Trudinger, Ellitic Partial Differential Equations of Second Order, 1998 edition, Springer, 2001.  Google Scholar

[23]

C. Gui and M. Schatzman, Symmetric quadruple phase transitions, Indiana University Mathematics Journal, 57 (2008), 781-836.  doi: 10.1512/iumj.2008.57.3089.  Google Scholar

[24]

M. E. Gurtin, On phase transitions with bulk, interfacial, and boundary Energy, Archive for Rational Mechanics and Analysis, 96 (1986), 243-264.  doi: 10.1007/BF00251908.  Google Scholar

[25]

M. E. Gurtin and H. Matano, On the structure of equilibrium phase transitions within the gradient theory of fluids, Quarterly of Applied Mathematics, 46 (1988), 301-317.  doi: 10.1090/qam/950604.  Google Scholar

[26]

F. Hamel, Bistable transition fronts in $\mathbb R^N$, Advances in Mathematics, 289 (2016), 279-344.  doi: 10.1016/j.aim.2015.11.033.  Google Scholar

[27]

F. HamelR. Monneau and J.-M. Roquejoffre, Existence and qualitative properties of multidimensional conical bistable fronts, Discrete and Continuous Dynamical Systems, 13 (2005), 1069-1096.  doi: 10.3934/dcds.2005.13.1069.  Google Scholar

[28]

S. Heinze, A Variational Approach to Traveling Waves, Technical Report 85, Max Planck Institute for Mathematical Sciences. Google Scholar

[29]

C. D. Levermore and J. X. Xin, Multidimensional stability of traveling waves in a bistable reaction-diffusion equation, II, Communications in Partial Differential Equations, 17 (1992), 1901-1924.  doi: 10.1080/03605309208820908.  Google Scholar

[30]

M. LuciaC. B. Muratov and M. Novaga, Existence of traveling waves of invasion for Ginzburg-Landau-type problems in infinite cylinders, Archive for Rational Mechanics and Analysis, 188 (2008), 475-508.  doi: 10.1007/s00205-007-0097-x.  Google Scholar

[31]

H. MatanoM. Nara and M. Taniguchi, Stability of planar waves in the Allen-Cahn equation, Communications in Partial Differential Equations, 34 (2009), 976-1002.  doi: 10.1080/03605300902963500.  Google Scholar

[32]

L. Modica, The gradient theory of phase transitions and the minimal interface criterion., Arch. Ration. Mech. Anal., 98 (1987), 123-142.  doi: 10.1007/BF00251230.  Google Scholar

[33]

Y. Morita and H. Ninomiya, Monostable-type traveling waves of bistable reaction-diffusion equations in the multi-dimensional space, Bulletin of the Institute of Mathematics Academia Sinica (New Series), 3 (2008), 567-584.   Google Scholar

[34]

Y. Morita and H. Ninomiya, Traveling wave solutions and entire solutions of reaction-diffusion equations, Sugaku Expositions, 23 (2010), 213-233.   Google Scholar

[35]

C. B. Muratov and M. Novaga, Front propagation in infinite cylinders. I. A variational approach, Communications in Mathematical Sciences, 6 (2008), 799-826.  doi: 10.4310/CMS.2008.v6.n4.a1.  Google Scholar

[36]

C. B. Muratov, A global variational structure and propagation of disturbances in reaction-diffusion systems of gradient type, Discrete and Continuous Dynamical Systems - Series B, 4 (2004), 867-892.  doi: 10.3934/dcdsb.2004.4.867.  Google Scholar

[37]

H. Ninomiya and M. Taniguchi, Existence and global stability of traveling curved fronts in the Allen-Cahn equations, Journal of Differential Equations, 213 (2005), 204-233.  doi: 10.1016/j.jde.2004.06.011.  Google Scholar

[38]

R. S. Palais, The principle of symmetric criticality, Communications in Mathematical Physics, 69 (1979), 19-30.  doi: 10.1007/BF01941322.  Google Scholar

[39]

P. Sternberg, Vector-Valued local minimizers of nonconvex variational problems, Rocky Mountain Journal of Mathematics, 21 (1991), 799-807.  doi: 10.1216/rmjm/1181072968.  Google Scholar

[40]

P. Sternberg and W. P. Zeimer, Local minimisers of a three-phase partition problem with triple junctions, Proc. Roy. Soc. Edinburgh Sect. A, 124 (1994), 1059-1073.  doi: 10.1017/S0308210500030110.  Google Scholar

[41]

M. Taniguchi, Traveling fronts of pyramidal shapes in the Allen-Cahn equations, SIAM Journal on Mathematical Analysis, 39 (2007), 319-344.  doi: 10.1137/060661788.  Google Scholar

[42]

M. Taniguchi, The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen-Cahn equations, Journal of Differential Equations, 246 (2009), 2103-2130.  doi: 10.1016/j.jde.2008.06.037.  Google Scholar

[43]

M. Taniguchi, An $(N-1)$-dimensional convex compact set gives an $N$-dimensional traveling front in the Allen-Cahn equation, SIAM Journal on Mathematical Analysis, 47 (2015), 455-476.  doi: 10.1137/130945041.  Google Scholar

[44]

M. Taniguchi, Convex compact sets in $R^{N-1}$ give traveling fronts of cooperation-diffusion systems in $R^N$, Journal of Differential Equations, 260 (2016), 4301-4338.  doi: 10.1016/j.jde.2015.11.010.  Google Scholar

Figure 1.  The union of gray regions is $ \{W(u)\le\epsilon\} $. The green curves are geodesic balls. And the red circle is $ \{ \mathbf p\ |\ | \mathbf p - \mathbf a| = \delta\} $
Figure 2.  The portrait of $ \partial_u\widetilde W = 0 $, $ \det( {{\rm{Hess\; }}}\widetilde W) = 0 $, $ \partial_{uu}W = 0 $ and $ | \mathbf p- \mathbf a| = 0.2 $
[1]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[2]

Shi-Liang Wu, Yu-Juan Sun, San-Yang Liu. Traveling fronts and entire solutions in partially degenerate reaction-diffusion systems with monostable nonlinearity. Discrete & Continuous Dynamical Systems, 2013, 33 (2) : 921-946. doi: 10.3934/dcds.2013.33.921

[3]

Guo Lin, Wan-Tong Li, Mingju Ma. Traveling wave solutions in delayed reaction diffusion systems with applications to multi-species models. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 393-414. doi: 10.3934/dcdsb.2010.13.393

[4]

Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057

[5]

Xiaojie Hou, Yi Li, Kenneth R. Meyer. Traveling wave solutions for a reaction diffusion equation with double degenerate nonlinearities. Discrete & Continuous Dynamical Systems, 2010, 26 (1) : 265-290. doi: 10.3934/dcds.2010.26.265

[6]

Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057

[7]

Cheng-Hsiung Hsu, Jian-Jhong Lin. Stability analysis of traveling wave solutions for lattice reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (5) : 1757-1774. doi: 10.3934/dcdsb.2020001

[8]

Hirokazu Ninomiya. Entire solutions and traveling wave solutions of the Allen-Cahn-Nagumo equation. Discrete & Continuous Dynamical Systems, 2019, 39 (4) : 2001-2019. doi: 10.3934/dcds.2019084

[9]

Chiun-Chuan Chen, Li-Chang Hung. Nonexistence of traveling wave solutions, exact and semi-exact traveling wave solutions for diffusive Lotka-Volterra systems of three competing species. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1451-1469. doi: 10.3934/cpaa.2016.15.1451

[10]

Jong-Shenq Guo, Yoshihisa Morita. Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations. Discrete & Continuous Dynamical Systems, 2005, 12 (2) : 193-212. doi: 10.3934/dcds.2005.12.193

[11]

Bingtuan Li, William F. Fagan, Garrett Otto, Chunwei Wang. Spreading speeds and traveling wave solutions in a competitive reaction-diffusion model for species persistence in a stream. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3267-3281. doi: 10.3934/dcdsb.2014.19.3267

[12]

Kota Ikeda, Masayasu Mimura. Traveling wave solutions of a 3-component reaction-diffusion model in smoldering combustion. Communications on Pure & Applied Analysis, 2012, 11 (1) : 275-305. doi: 10.3934/cpaa.2012.11.275

[13]

Guo Lin, Haiyan Wang. Traveling wave solutions of a reaction-diffusion equation with state-dependent delay. Communications on Pure & Applied Analysis, 2016, 15 (2) : 319-334. doi: 10.3934/cpaa.2016.15.319

[14]

Lianzhang Bao, Zhengfang Zhou. Traveling wave solutions for a one dimensional model of cell-to-cell adhesion and diffusion with monostable reaction term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 395-412. doi: 10.3934/dcdss.2017019

[15]

Xiaojie Hou, Yi Li. Local stability of traveling-wave solutions of nonlinear reaction-diffusion equations. Discrete & Continuous Dynamical Systems, 2006, 15 (2) : 681-701. doi: 10.3934/dcds.2006.15.681

[16]

Joaquin Riviera, Yi Li. Existence of traveling wave solutions for a nonlocal reaction-diffusion model of influenza a drift. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 157-174. doi: 10.3934/dcdsb.2010.13.157

[17]

Guo Lin, Shuxia Pan. Periodic traveling wave solutions of periodic integrodifference systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 3005-3031. doi: 10.3934/dcdsb.2020049

[18]

Klemens Fellner, Evangelos Latos, Takashi Suzuki. Global classical solutions for mass-conserving, (super)-quadratic reaction-diffusion systems in three and higher space dimensions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3441-3462. doi: 10.3934/dcdsb.2016106

[19]

L. Cherfils, Y. Il'yasov. On the stationary solutions of generalized reaction diffusion equations with $p\& q$-Laplacian. Communications on Pure & Applied Analysis, 2005, 4 (1) : 9-22. doi: 10.3934/cpaa.2005.4.9

[20]

Hui Xue, Jianhua Huang, Zhixian Yu. Invasion traveling wave solutions in temporally discrete random-diffusion systems with delays. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1107-1131. doi: 10.3934/dcdss.2017060

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (66)
  • HTML views (101)
  • Cited by (0)

[Back to Top]