If $ (M,g) $ is a smooth compact rank $ 1 $ Riemannian manifold without focal points, it is shown that the measure $ \mu_{\max} $ of maximal entropy for the geodesic flow is unique. In this article, we study the statistic properties and prove that this unique measure $ \mu_{\max} $ is mixing. Stronger conclusion that the geodesic flow on the unit tangent bundle $ SM $ with respect to $ \mu_{\max} $ is Bernoulli is acquired provided $ M $ is a compact surface with genus greater than one and no focal points.
Citation: |
[1] |
M. Babillot, On the mixing property for hyperbolic systems, Israel J. Math., 129 (2002), 61-76.
doi: 10.1007/BF02773153.![]() ![]() ![]() |
[2] |
W. Ballmann, Axial isometries of manifolds of nonpositive curvature, Math. Ann., 259 (1982), 131-144.
doi: 10.1007/BF01456836.![]() ![]() ![]() |
[3] |
W. Ballmann, M. Brin and P. Eberlein, Structure of manifolds of nonpositive curvature. I, Ann. of Math., 122 (1985), 171-203.
doi: 10.2307/1971373.![]() ![]() ![]() |
[4] |
K. Burns and A. Katok, Manifolds with non-positive curvature, Ergodic Theory Dynam. Systems, 5 (1985), 307-317.
doi: 10.1017/S0143385700002935.![]() ![]() ![]() |
[5] |
E. I. Dinaburg, On the relations among various entropy characteristics of dynamical systems, Math. USSR Izv., 5 (1971), 337-378.
doi: 10.1070/IM1971v005n02ABEH001050.![]() ![]() |
[6] |
P. B. Eberlein, Geometry of Nonpositively Curved Manifolds, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1996.
![]() ![]() |
[7] |
R. Gulliver, On the variety of manifolds without conjugate points, Trans. Amer. Math. Soc., 210 (1975), 185-201.
doi: 10.1090/S0002-9947-1975-0383294-0.![]() ![]() ![]() |
[8] |
G. Knieper, The uniqueness of the measure of maximal entropy for geodesic flows on rank $1$ manifolds, Ann. of Math., 148 (1998), 291-314.
doi: 10.2307/120995.![]() ![]() ![]() |
[9] |
G. Knieper, Hyperbolic dynamics and Riemannian geometry, in Handbook of Dynamical Systems, 1A, North-Holland, Amsterdam, 2002,453–545.
doi: 10.1016/S1874-575X(02)80008-X.![]() ![]() ![]() |
[10] |
F. Ledrappier, Y. Lima and O. Sarig, Ergodic properties of equilibrium measures for smooth three dimensional flows, Comment. Math. Helvetici, 91 (2016), 65-106.
doi: 10.4171/CMH/378.![]() ![]() ![]() |
[11] |
F. Liu and F. Wang, Entropy-expansiveness of geodesic flows on closed manifolds without conjugate points, Acta Math. Sin. (Engl. Ser.), 32 (2016), 507-520.
doi: 10.1007/s10114-016-5200-5.![]() ![]() ![]() |
[12] |
F. Liu, F. Wang and W. Wu, On the Patterson-Sullivan measure for geodesic flows on rank $1$ manifolds without focal points, Discrete Contin. Dyn. Syst., 40 (2020), 1517-1554.
doi: 10.3934/dcds.2020085.![]() ![]() ![]() |
[13] |
F. Liu, F. Wang and W. Wu, The topological entropy for autonomous Lagrangian systems on compact manifolds whose fundamental groups have exponential growth, Sci. China Math., 63 (2020), 1323-1338.
doi: 10.1007/s11425-018-9408-8.![]() ![]() ![]() |
[14] |
F. Liu and X. Zhu, The transitivity of geodesic flows on rank $1$ manifolds without focal points, Differential Geom. Appl., 60 (2018), 49-53.
doi: 10.1016/j.difgeo.2018.05.007.![]() ![]() ![]() |
[15] |
J. J. O'Sullivan, Riemannian manifolds without focal points, J. Differential Geometry, 11 (1976), 321-333.
doi: 10.4310/jdg/1214433590.![]() ![]() ![]() |
[16] |
G. P. Paternain, Geodesic Flows, Progress in Mathematics, 180, Birkhäuser Boston, Inc., Boston, MA, 1999.
doi: 10.1007/978-1-4612-1600-1.![]() ![]() ![]() |
[17] |
R. O. Ruggiero, Expansive geodesic flows in manifolds with no conjugate points, Ergodic Theory Dynam. Systems, 17 (1997), 211-225.
doi: 10.1017/S0143385797060963.![]() ![]() ![]() |
[18] |
P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982.
![]() ![]() |
[19] |
J. Watkins, The higher rank rigidity theorem for manifolds with no focal points, Geom. Dedicata, 164 (2013), 319-349.
doi: 10.1007/s10711-012-9776-3.![]() ![]() ![]() |
[20] |
W. Wu, F. Liu and F. Wang, On the ergodicity of geodesic flows on surfaces without focal points, preprint, arXiv:1812.04409.
![]() |