-
Previous Article
Refined construction of type II blow-up solutions for semilinear heat equations with Joseph–Lundgren supercritical nonlinearity
- DCDS Home
- This Issue
-
Next Article
Infinitely many radial solutions for a $ p $-Laplacian problem with indefinite weight
An approximation of forward self-similar solutions to the 3D Navier-Stokes system
1. | Mathematical Institute, OxPDE, University of Oxford, Oxford, UK |
2. | St Petersburg Department of Steklov Mathematical Institute, RAS, RUSSIA |
In this paper, we present two constructions of forward self-similar solutions to the $ 3 $D incompressible Navier-Stokes system, as the singular limit of forward self-similar solutions to certain parabolic systems.
References:
[1] |
T. Barker, G. Seregin and V. Šverák, On stability of weak Navier-Stokes solutions with large $L^{3, \infty}$ initial data, Commun. Partial Differ. Equ, 43, (2018), 628–651.
doi: 10.1080/03605302.2018.1449219. |
[2] |
Z. Bradshaw and T-P. Tsai, Forward Discretely Self-Similar Solutions of the Navier-Stokes Equations Ⅱ, Ann. Henri Poincaré, 18 (2017), 1095–1119.
doi: 10.1007/s00023-016-0519-0. |
[3] |
D. Chae and J. Wolf, Existence of discretely self-similar solutions to the Navier-Stokes equations for initial value in $L^2_loc(\mathbb{R}^3)$, arXiv: 1610.01386. |
[4] |
Y. Giga and T. Miyakawa, Navier-Stokes flow in $\mathbb{R}^3$ with measure as initial vorticity and Morrey spaces, Commun. Partial Differ. Equ, 14, (1989), 577–618.
doi: 10.1080/03605308908820621. |
[5] |
L. Grafakos, Classical Fourier Analysis, Graduate Texts in Mathematics, 249. Springer-Verlag New York, 2008. |
[6] |
J. Guillod and V. Šverák, Numerical investigations of non-uniqueness for the Naier-Stokes intial value problem in borderline spaces, Preprint (2017), arXiv:1704.00560. |
[7] |
F. Hounkpe, Decay estimate for some toy-models related to the Navier-Stokes system, Preprint (2020), arXiv:2008.08712. |
[8] |
H. Jia and V. Šverák, Local-in-space estimates near initial time for weak solutions of the Navier-Stokes equations and forward self-similar solutions, Invent math, 196 (2014), 233–265.
doi: 10.1007/s00222-013-0468-x. |
[9] |
N. Kikuchi and G. Seregin, Weak solutions to the Cauchy problem for the Navier-Stokes equations satisfying the local energy inequality, Nonlinear Equations and Spectral Theory, Amer. Math. Soc. Transl. Ser. 2,220, Adv. Math. Sci., 59, Amer. Math. Soc., Providence, RI, 2007,141–164.
doi: 10.1090/trans2/220/07. |
[10] |
M. Korobkov and T-P. Tsai, Forward self-similar solutions of the Navier-Stokes equations in the half space, Analysis & PDE, 9 (2016), 1811–1827.
doi: 10.2140/apde.2016.9.1811. |
[11] |
O. A. Ladyzhenskaya and G. A. Seregin,
A method for the approximate solution of initial-boundary value problems for Navier-Stokes equations, J. Math Sci, 75 (1995), 2038-2057.
doi: 10.1007/BF02362945. |
[12] |
P. G. Lemarie-Rieusset, Recent Developments in the Navier-Stokes Problem, Chapman and Hall/CRC Research Notes in Mathematics, 431. Chapman and Hall/CRC, Boca Raton, FL 2002.
doi: 10.1201/9781420035674. |
[13] |
P. G. Lemarie-Rieusset, The Navier-Stokes Problem in the 21st Century, CRC Press, Boca Raton, FL (2016). xxii+718 pp.
doi: 10.1201/b19556. |
[14] |
J. Leray,
Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.
doi: 10.1007/BF02547354. |
[15] |
J. Mawhin, Leray-Schauder degree: a half-century of extensions and applications, Topol. Methods Nonlinear Anal., 14 (1999), 195–228.
doi: 10.12775/TMNA.1999.029. |
[16] |
D. S. McCormick, J. C. Robinson and J. L. Rodrigo, Generalised Gagliardo-Nirenberg Inequalities Using Weak Lebesgue Spaces and BMO, Milan J. Math., 81 (2013), 265–289.
doi: 10.1007/s00032-013-0202-6. |
show all references
References:
[1] |
T. Barker, G. Seregin and V. Šverák, On stability of weak Navier-Stokes solutions with large $L^{3, \infty}$ initial data, Commun. Partial Differ. Equ, 43, (2018), 628–651.
doi: 10.1080/03605302.2018.1449219. |
[2] |
Z. Bradshaw and T-P. Tsai, Forward Discretely Self-Similar Solutions of the Navier-Stokes Equations Ⅱ, Ann. Henri Poincaré, 18 (2017), 1095–1119.
doi: 10.1007/s00023-016-0519-0. |
[3] |
D. Chae and J. Wolf, Existence of discretely self-similar solutions to the Navier-Stokes equations for initial value in $L^2_loc(\mathbb{R}^3)$, arXiv: 1610.01386. |
[4] |
Y. Giga and T. Miyakawa, Navier-Stokes flow in $\mathbb{R}^3$ with measure as initial vorticity and Morrey spaces, Commun. Partial Differ. Equ, 14, (1989), 577–618.
doi: 10.1080/03605308908820621. |
[5] |
L. Grafakos, Classical Fourier Analysis, Graduate Texts in Mathematics, 249. Springer-Verlag New York, 2008. |
[6] |
J. Guillod and V. Šverák, Numerical investigations of non-uniqueness for the Naier-Stokes intial value problem in borderline spaces, Preprint (2017), arXiv:1704.00560. |
[7] |
F. Hounkpe, Decay estimate for some toy-models related to the Navier-Stokes system, Preprint (2020), arXiv:2008.08712. |
[8] |
H. Jia and V. Šverák, Local-in-space estimates near initial time for weak solutions of the Navier-Stokes equations and forward self-similar solutions, Invent math, 196 (2014), 233–265.
doi: 10.1007/s00222-013-0468-x. |
[9] |
N. Kikuchi and G. Seregin, Weak solutions to the Cauchy problem for the Navier-Stokes equations satisfying the local energy inequality, Nonlinear Equations and Spectral Theory, Amer. Math. Soc. Transl. Ser. 2,220, Adv. Math. Sci., 59, Amer. Math. Soc., Providence, RI, 2007,141–164.
doi: 10.1090/trans2/220/07. |
[10] |
M. Korobkov and T-P. Tsai, Forward self-similar solutions of the Navier-Stokes equations in the half space, Analysis & PDE, 9 (2016), 1811–1827.
doi: 10.2140/apde.2016.9.1811. |
[11] |
O. A. Ladyzhenskaya and G. A. Seregin,
A method for the approximate solution of initial-boundary value problems for Navier-Stokes equations, J. Math Sci, 75 (1995), 2038-2057.
doi: 10.1007/BF02362945. |
[12] |
P. G. Lemarie-Rieusset, Recent Developments in the Navier-Stokes Problem, Chapman and Hall/CRC Research Notes in Mathematics, 431. Chapman and Hall/CRC, Boca Raton, FL 2002.
doi: 10.1201/9781420035674. |
[13] |
P. G. Lemarie-Rieusset, The Navier-Stokes Problem in the 21st Century, CRC Press, Boca Raton, FL (2016). xxii+718 pp.
doi: 10.1201/b19556. |
[14] |
J. Leray,
Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.
doi: 10.1007/BF02547354. |
[15] |
J. Mawhin, Leray-Schauder degree: a half-century of extensions and applications, Topol. Methods Nonlinear Anal., 14 (1999), 195–228.
doi: 10.12775/TMNA.1999.029. |
[16] |
D. S. McCormick, J. C. Robinson and J. L. Rodrigo, Generalised Gagliardo-Nirenberg Inequalities Using Weak Lebesgue Spaces and BMO, Milan J. Math., 81 (2013), 265–289.
doi: 10.1007/s00032-013-0202-6. |
[1] |
Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637 |
[2] |
Zoran Grujić. Regularity of forward-in-time self-similar solutions to the 3D Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 837-843. doi: 10.3934/dcds.2006.14.837 |
[3] |
Hideo Kubo, Kotaro Tsugawa. Global solutions and self-similar solutions of the coupled system of semilinear wave equations in three space dimensions. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 471-482. doi: 10.3934/dcds.2003.9.471 |
[4] |
Dongho Chae, Kyungkeun Kang, Jihoon Lee. Notes on the asymptotically self-similar singularities in the Euler and the Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1181-1193. doi: 10.3934/dcds.2009.25.1181 |
[5] |
Donatella Donatelli, Eduard Feireisl, Antonín Novotný. On incompressible limits for the Navier-Stokes system on unbounded domains under slip boundary conditions. Discrete and Continuous Dynamical Systems - B, 2010, 13 (4) : 783-798. doi: 10.3934/dcdsb.2010.13.783 |
[6] |
Marek Fila, Michael Winkler, Eiji Yanagida. Convergence to self-similar solutions for a semilinear parabolic equation. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 703-716. doi: 10.3934/dcds.2008.21.703 |
[7] |
Qiaolin He. Numerical simulation and self-similar analysis of singular solutions of Prandtl equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 101-116. doi: 10.3934/dcdsb.2010.13.101 |
[8] |
Shota Sato, Eiji Yanagida. Singular backward self-similar solutions of a semilinear parabolic equation. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 897-906. doi: 10.3934/dcdss.2011.4.897 |
[9] |
Adrien Blanchet, Philippe Laurençot. Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion. Communications on Pure and Applied Analysis, 2012, 11 (1) : 47-60. doi: 10.3934/cpaa.2012.11.47 |
[10] |
K. T. Joseph, Philippe G. LeFloch. Boundary layers in weak solutions of hyperbolic conservation laws II. self-similar vanishing diffusion limits. Communications on Pure and Applied Analysis, 2002, 1 (1) : 51-76. doi: 10.3934/cpaa.2002.1.51 |
[11] |
Vladimir V. Chepyzhov, E. S. Titi, Mark I. Vishik. On the convergence of solutions of the Leray-$\alpha $ model to the trajectory attractor of the 3D Navier-Stokes system. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 481-500. doi: 10.3934/dcds.2007.17.481 |
[12] |
Stefano Scrobogna. Global existence and convergence of nondimensionalized incompressible Navier-Stokes equations in low Froude number regime. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5471-5511. doi: 10.3934/dcds.2020235 |
[13] |
Weronika Biedrzycka, Marta Tyran-Kamińska. Self-similar solutions of fragmentation equations revisited. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 13-27. doi: 10.3934/dcdsb.2018002 |
[14] |
Marco Cannone, Grzegorz Karch. On self-similar solutions to the homogeneous Boltzmann equation. Kinetic and Related Models, 2013, 6 (4) : 801-808. doi: 10.3934/krm.2013.6.801 |
[15] |
Roberta Bianchini, Roberto Natalini. Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations. Kinetic and Related Models, 2019, 12 (1) : 133-158. doi: 10.3934/krm.2019006 |
[16] |
Grzegorz Karch, Maria E. Schonbek, Tomas P. Schonbek. Singularities of certain finite energy solutions to the Navier-Stokes system. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 189-206. doi: 10.3934/dcds.2020008 |
[17] |
L. Olsen. Rates of convergence towards the boundary of a self-similar set. Discrete and Continuous Dynamical Systems, 2007, 19 (4) : 799-811. doi: 10.3934/dcds.2007.19.799 |
[18] |
Jingrui Wang, Keyan Wang. Almost sure existence of global weak solutions to the 3D incompressible Navier-Stokes equation. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 5003-5019. doi: 10.3934/dcds.2017215 |
[19] |
Yinghua Li, Shijin Ding, Mingxia Huang. Blow-up criterion for an incompressible Navier-Stokes/Allen-Cahn system with different densities. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1507-1523. doi: 10.3934/dcdsb.2016009 |
[20] |
Jishan Fan, Fucai Li, Gen Nakamura. Convergence of the full compressible Navier-Stokes-Maxwell system to the incompressible magnetohydrodynamic equations in a bounded domain. Kinetic and Related Models, 2016, 9 (3) : 443-453. doi: 10.3934/krm.2016002 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]