• Previous Article
    Singularity formation for compressible Euler equations with time-dependent damping
  • DCDS Home
  • This Issue
  • Next Article
    Refined construction of type II blow-up solutions for semilinear heat equations with Joseph–Lundgren supercritical nonlinearity
October  2021, 41(10): 4887-4919. doi: 10.3934/dcds.2021061

Multiple positive bound state solutions for a critical Choquard equation

1. 

Unidade Acadêmica de Matemática, Universidade Federal de Campina Grande, 58429-970, Campina Grande - PB, Brazil

2. 

Departamento de Matemática, Universidade de Brasilia - UNB, 70910-900, Brasília-DF, Brazil

3. 

Dipartimento di Matematica, Università di Roma "Tor Vergata", CEP: 00133, Roma, Italia

* Corresponding author: R. Molle

Received  August 2020 Published  October 2021 Early access  March 2021

In this paper we consider the problem
$ (P_{\lambda})\ \ \ \ \ \ \left\{ \begin{array}{rcl} -\Delta u+V_{\lambda}(x)u = (I_{\mu}*|u|^{2^{*}_{\mu}})|u|^{2^{*}_{\mu}-2}u \ \ \mbox{in} \ \ \mathbb{R}^{N}, \\ u>0 \ \ \mbox{in} \ \ \mathbb{R}^{N}, \end{array} \right. $
where
$ V_{\lambda} = \lambda+V_{0} $
with
$ \lambda \geq 0 $
,
$ V_0\in L^{N/2}({\mathbb{R}}^N) $
,
$ I_{\mu} = \frac{1}{|x|^\mu} $
is the Riesz potential with
$ 0<\mu<\min\{N, 4\} $
and
$ 2^{*}_{\mu} = \frac{2N-\mu}{N-2} $
with
$ N\geq 3 $
. Under some smallness assumption on
$ V_0 $
and
$ \lambda $
we prove the existence of two positive solutions of
$ (P_\lambda) $
. In order to prove the main results, we used variational methods combined with degree theory.
Citation: Claudianor O. Alves, Giovany M. Figueiredo, Riccardo Molle. Multiple positive bound state solutions for a critical Choquard equation. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4887-4919. doi: 10.3934/dcds.2021061
References:
[1]

C. O. AlvesG. M. Figueiredo and M. Yang, Existence of solutions for a nonlinear Choquard equation with potential vanishing at infinity, Advanced in Nonlinear Analysis, 5 (2016), 331-345.  doi: 10.1515/anona-2015-0123.

[2]

C. O. Alves, A. B. Nóbrega and M. Yang, Multi-bump solutions for Choquard equation with deepening potential well, Calc. Var. Partial Differ. Eq., 55 (2016), Art. 48, 28 pp. doi: 10.1007/s00526-016-0984-9.

[3]

C. O. Alves, Existence of positive solutions for a problem with lack of compactness involving the p-Laplacian, Nonlinear Anal., 51 (2002), 1187-1206.  doi: 10.1016/S0362-546X(01)00887-2.

[4]

C. O. Alves and M. Yang, Multiplicity and concentration behavior of solutions for a quasilinear Choquard equation via penalization method, Proc. Roy. Soc. Edinburgh Sect. A, 146 (2016), 23-58.  doi: 10.1017/S0308210515000311.

[5]

C. O. Alves and Y. Jianfu, Existence and regularity of solutions for a Choquard equation with zero mass, Milan J. Math., 86 (2018), 329-342.  doi: 10.1007/s00032-018-0289-x.

[6]

T. Aubin, Problemès Isopérimétriques et Sobolev spaces, J. Diff. Geom., 11 (1976), 573-598.  doi: 10.4310/jdg/1214433725.

[7]

T. Bartsch, R. Molle, M. Rizzi and G. Verzini, Normalized solutions of mass supercritical Schrödinger equations with potential, arXiv: 2008.07431, to appear on Comm. in PDE, https://doi.org/10.1080/03605302.2021.1893747. doi: 10.1080/03605302.2021.1893747.

[8]

V. BenciC. R. Grisanti and A. M. Micheletti, Existence of solutions for the nonlinear Schrödinger equation with $V(\infty) = 0$, Progr. Nonlinear Differential Equations Appl., 66 (2005), 53-65.  doi: 10.1007/3-7643-7401-2_4.

[9]

V. Benci and G. Cerami, Existence of positive solutions of the equation $-\Delta u +a(x)u = u^{\frac{N+2}{N-2}}$ in $\mathbb{R}^N, $, J. Funct. Anal., 88 (1990), 90-117.  doi: 10.1016/0022-1236(90)90120-A.

[10]

A.K. Ben-NaoumC. Troestler and M. Willem, Extrema problems with critical Sobolev exponents on unbounded domains, Nonlinear Analysis, 26 (1996), 823-833.  doi: 10.1016/0362-546X(94)00324-B.

[11]

L. Bergé and A. Couairon, Nonlinear propagation of self-guided ultra-short pulses in ionized gases, Phys. Plasmas, 7 (2000), 210-230. 

[12]

G. Cerami and R. Molle, Multiple positive bound states for critical Schrödinger-Poisson systems, ESAIM Control Optim. Calc. Var., 25 (2019), Paper No. 73, 29 pp. doi: 10.1051/cocv/2018071.

[13]

J. Chabrowski, Concentration-compactness principle at infinity and semilinear elliptic equations involving critical and subcritical Sobolev exponents, Calc. Var. Partial Differ. Eq., 3 (1995), 493-512.  doi: 10.1007/BF01187898.

[14]

P. Cherrier, Meilleures constantes dans les inegalites relatives aux espaces de Sobolev, Bull. Sci. Math., 108 (1984), 225-262. 

[15]

S. CingolaniM. Clapp and S. Secchi, Multiple solutions to a magnetic nonlinear Choquard equation, Z. Angew. Math. Phys., 63 (2012), 233-248.  doi: 10.1007/s00033-011-0166-8.

[16]

F. DalfovoS. GiorginiL. P. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys., 71 (1999), 463-512. 

[17]

L. Du and M. Yang, Uniqueness and nondegeneracy of solutions for a critical nonlocal equation, Discrete Contin. Dyn. Syst., 39 (2019), 5847–5866, arXiv: 1810.11186v1. doi: 10.3934/dcds.2019219.

[18]

L. Du, F. Gao and M. Yang, Existence and qualitative analysis for nonlinear weighted Choquard equations, arXiv: 1810.11759v1.

[19]

F. Gao and M. Yang, The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation, Science China Mathematics, 61 (2018), 1219-1242.  doi: 10.1007/s11425-016-9067-5.

[20]

F. GaoE. da SilvaM. Yang and J. Zhou, Existence of solutions for critical Choquard equations via the concentration-compactness method, Proc. Roy. Soc. Edinburgh Sect. A, 150 (2020), 921-954.  doi: 10.1017/prm.2018.131.

[21]

M. Ghimenti and J. Van Schaftingen, Nodal solutions for the Choquard equation, J. of Funct. Anal., 271 (2016), 107–135. doi: 10.1016/j.jfa.2016.04.019.

[22]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften, vol. 224, Springer, Berlin, 1983. doi: 10.1007/978-3-642-61798-0.

[23]

P. M. Girão, A sharp inequality for Sobolev functions, C. R. Math. Acad. Sci. Paris, 334 (2002), 105-108.  doi: 10.1016/S1631-073X(02)02215-X.

[24]

R. HadijiR. MolleD. Passaseo and H. Yazidi, Localization of solutions for nonlinear elliptic problems with critical growth, C. R. Acad. Sci. Paris Sér. I Math., 343 (2006), 725-730.  doi: 10.1016/j.crma.2006.10.018.

[25]

S. Lancelotti and R. Molle, Positive solutions for autonomous and non-autonomous nonlinear critical elliptic problems in unbounded domains, NoDEA Nonlinear Differential Equations Appl., 27 (2020), Paper No. 8, 28 pp. doi: 10.1007/s00030-019-0611-5.

[26]

E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Studies in Appl. Math., 57 (1976/77), 93-105.  doi: 10.1002/sapm197757293.

[27]

E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2), 118 (1983), 349-374.  doi: 10.2307/2007032.

[28]

E. Lieb and M. Loss, Analysis,, Gradute Studies in Mathematics, AMS, Providence, Rhode island, 2001. doi: 10.1090/gsm/014.

[29]

S. Liu, Regularity, symmetry, and uniqueness of some integral type quasilinear equations., Nonlinear Anal., 71 (2009), 1796-1806.  doi: 10.1016/j.na.2009.01.014.

[30]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I., Rev. Mat. Iberoamericana, Part I, 1 (1985), 145–201, and Part II, 2 (1985), 45–121. doi: 10.4171/RMI/6.

[31]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195 (2010), 455–467. doi: 10.1007/s00205-008-0208-3.

[32]

C. Mercuri and M. Willem, A global compactness result for the p-Laplacian involving critical nonlinearities, Discrete & Continuous Dynamical Systems - A, 28 (2010), 469-493.  doi: 10.3934/dcds.2010.28.469.

[33]

O. H. Miyagaki, On a class of semilinear elliptic problems in $\mathbb{R}^N$ with critical growth, Nonlinear Analysis, 29 (1997), 773-781.  doi: 10.1016/S0362-546X(96)00087-9.

[34]

R. Molle and D. Passaseo, Multispike solutions of nonlinear elliptic equations with critical Sobolev exponent, Comm. in PDE., 32 (2007), 797-818.  doi: 10.1080/03605300600781642.

[35]

V. Moroz and J. Van Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl., 19 (2017), 773-813.  doi: 10.1007/s11784-016-0373-1.

[36]

V. Moroz and J. Van Schaftingen, Ground states of nonlinear Choquard equation: Hardy-Littlewood-Sobolev critical exponent, Commun. Contemp. Math., 17 (2015), 1550005, 12 pp, arXiv: 1403.7414v1. doi: 10.1142/S0219199715500054.

[37]

V. Moroz and J. Van Schaftingen, Ground states of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153-184.  doi: 10.1016/j.jfa.2013.04.007.

[38]

V. Moroz and J. Van Schaftingen, Existence of ground states for a class of nonlinear Choquard equations., Trans. Amer. Math. Soc., 367 (2015), 6557-6579.  doi: 10.1090/S0002-9947-2014-06289-2.

[39]

V. Moroz and J. Van Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl., 19 (2017), 773-813.  doi: 10.1007/s11784-016-0373-1.

[40]

D. Passaseo, Some sufficient conditions for the existence of positive solutions to the equation $-\Delta u +a(x)u = u^{\frac{N+2}{N-2}}$ in bounded domains, Ann. Inst. Henri Poincaré, 13 (1996), 185-227.  doi: 10.1016/S0294-1449(16)30102-0.

[41]

S. Secchi, A note on Schrödinger-Newton systems with decaying electric potential, Nonlinear Anal., 72 (2010), 3842–3856. doi: 10.1016/j.na.2010.01.021.

[42]

M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonliarities, Math. Z., 187 (1984), 511-517.  doi: 10.1007/BF01174186.

[43]

M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Fourth edition, Springer-Verlag, Berlin, 2008.

[44]

G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353-372.  doi: 10.1007/BF02418013.

show all references

References:
[1]

C. O. AlvesG. M. Figueiredo and M. Yang, Existence of solutions for a nonlinear Choquard equation with potential vanishing at infinity, Advanced in Nonlinear Analysis, 5 (2016), 331-345.  doi: 10.1515/anona-2015-0123.

[2]

C. O. Alves, A. B. Nóbrega and M. Yang, Multi-bump solutions for Choquard equation with deepening potential well, Calc. Var. Partial Differ. Eq., 55 (2016), Art. 48, 28 pp. doi: 10.1007/s00526-016-0984-9.

[3]

C. O. Alves, Existence of positive solutions for a problem with lack of compactness involving the p-Laplacian, Nonlinear Anal., 51 (2002), 1187-1206.  doi: 10.1016/S0362-546X(01)00887-2.

[4]

C. O. Alves and M. Yang, Multiplicity and concentration behavior of solutions for a quasilinear Choquard equation via penalization method, Proc. Roy. Soc. Edinburgh Sect. A, 146 (2016), 23-58.  doi: 10.1017/S0308210515000311.

[5]

C. O. Alves and Y. Jianfu, Existence and regularity of solutions for a Choquard equation with zero mass, Milan J. Math., 86 (2018), 329-342.  doi: 10.1007/s00032-018-0289-x.

[6]

T. Aubin, Problemès Isopérimétriques et Sobolev spaces, J. Diff. Geom., 11 (1976), 573-598.  doi: 10.4310/jdg/1214433725.

[7]

T. Bartsch, R. Molle, M. Rizzi and G. Verzini, Normalized solutions of mass supercritical Schrödinger equations with potential, arXiv: 2008.07431, to appear on Comm. in PDE, https://doi.org/10.1080/03605302.2021.1893747. doi: 10.1080/03605302.2021.1893747.

[8]

V. BenciC. R. Grisanti and A. M. Micheletti, Existence of solutions for the nonlinear Schrödinger equation with $V(\infty) = 0$, Progr. Nonlinear Differential Equations Appl., 66 (2005), 53-65.  doi: 10.1007/3-7643-7401-2_4.

[9]

V. Benci and G. Cerami, Existence of positive solutions of the equation $-\Delta u +a(x)u = u^{\frac{N+2}{N-2}}$ in $\mathbb{R}^N, $, J. Funct. Anal., 88 (1990), 90-117.  doi: 10.1016/0022-1236(90)90120-A.

[10]

A.K. Ben-NaoumC. Troestler and M. Willem, Extrema problems with critical Sobolev exponents on unbounded domains, Nonlinear Analysis, 26 (1996), 823-833.  doi: 10.1016/0362-546X(94)00324-B.

[11]

L. Bergé and A. Couairon, Nonlinear propagation of self-guided ultra-short pulses in ionized gases, Phys. Plasmas, 7 (2000), 210-230. 

[12]

G. Cerami and R. Molle, Multiple positive bound states for critical Schrödinger-Poisson systems, ESAIM Control Optim. Calc. Var., 25 (2019), Paper No. 73, 29 pp. doi: 10.1051/cocv/2018071.

[13]

J. Chabrowski, Concentration-compactness principle at infinity and semilinear elliptic equations involving critical and subcritical Sobolev exponents, Calc. Var. Partial Differ. Eq., 3 (1995), 493-512.  doi: 10.1007/BF01187898.

[14]

P. Cherrier, Meilleures constantes dans les inegalites relatives aux espaces de Sobolev, Bull. Sci. Math., 108 (1984), 225-262. 

[15]

S. CingolaniM. Clapp and S. Secchi, Multiple solutions to a magnetic nonlinear Choquard equation, Z. Angew. Math. Phys., 63 (2012), 233-248.  doi: 10.1007/s00033-011-0166-8.

[16]

F. DalfovoS. GiorginiL. P. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys., 71 (1999), 463-512. 

[17]

L. Du and M. Yang, Uniqueness and nondegeneracy of solutions for a critical nonlocal equation, Discrete Contin. Dyn. Syst., 39 (2019), 5847–5866, arXiv: 1810.11186v1. doi: 10.3934/dcds.2019219.

[18]

L. Du, F. Gao and M. Yang, Existence and qualitative analysis for nonlinear weighted Choquard equations, arXiv: 1810.11759v1.

[19]

F. Gao and M. Yang, The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation, Science China Mathematics, 61 (2018), 1219-1242.  doi: 10.1007/s11425-016-9067-5.

[20]

F. GaoE. da SilvaM. Yang and J. Zhou, Existence of solutions for critical Choquard equations via the concentration-compactness method, Proc. Roy. Soc. Edinburgh Sect. A, 150 (2020), 921-954.  doi: 10.1017/prm.2018.131.

[21]

M. Ghimenti and J. Van Schaftingen, Nodal solutions for the Choquard equation, J. of Funct. Anal., 271 (2016), 107–135. doi: 10.1016/j.jfa.2016.04.019.

[22]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften, vol. 224, Springer, Berlin, 1983. doi: 10.1007/978-3-642-61798-0.

[23]

P. M. Girão, A sharp inequality for Sobolev functions, C. R. Math. Acad. Sci. Paris, 334 (2002), 105-108.  doi: 10.1016/S1631-073X(02)02215-X.

[24]

R. HadijiR. MolleD. Passaseo and H. Yazidi, Localization of solutions for nonlinear elliptic problems with critical growth, C. R. Acad. Sci. Paris Sér. I Math., 343 (2006), 725-730.  doi: 10.1016/j.crma.2006.10.018.

[25]

S. Lancelotti and R. Molle, Positive solutions for autonomous and non-autonomous nonlinear critical elliptic problems in unbounded domains, NoDEA Nonlinear Differential Equations Appl., 27 (2020), Paper No. 8, 28 pp. doi: 10.1007/s00030-019-0611-5.

[26]

E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Studies in Appl. Math., 57 (1976/77), 93-105.  doi: 10.1002/sapm197757293.

[27]

E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2), 118 (1983), 349-374.  doi: 10.2307/2007032.

[28]

E. Lieb and M. Loss, Analysis,, Gradute Studies in Mathematics, AMS, Providence, Rhode island, 2001. doi: 10.1090/gsm/014.

[29]

S. Liu, Regularity, symmetry, and uniqueness of some integral type quasilinear equations., Nonlinear Anal., 71 (2009), 1796-1806.  doi: 10.1016/j.na.2009.01.014.

[30]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I., Rev. Mat. Iberoamericana, Part I, 1 (1985), 145–201, and Part II, 2 (1985), 45–121. doi: 10.4171/RMI/6.

[31]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195 (2010), 455–467. doi: 10.1007/s00205-008-0208-3.

[32]

C. Mercuri and M. Willem, A global compactness result for the p-Laplacian involving critical nonlinearities, Discrete & Continuous Dynamical Systems - A, 28 (2010), 469-493.  doi: 10.3934/dcds.2010.28.469.

[33]

O. H. Miyagaki, On a class of semilinear elliptic problems in $\mathbb{R}^N$ with critical growth, Nonlinear Analysis, 29 (1997), 773-781.  doi: 10.1016/S0362-546X(96)00087-9.

[34]

R. Molle and D. Passaseo, Multispike solutions of nonlinear elliptic equations with critical Sobolev exponent, Comm. in PDE., 32 (2007), 797-818.  doi: 10.1080/03605300600781642.

[35]

V. Moroz and J. Van Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl., 19 (2017), 773-813.  doi: 10.1007/s11784-016-0373-1.

[36]

V. Moroz and J. Van Schaftingen, Ground states of nonlinear Choquard equation: Hardy-Littlewood-Sobolev critical exponent, Commun. Contemp. Math., 17 (2015), 1550005, 12 pp, arXiv: 1403.7414v1. doi: 10.1142/S0219199715500054.

[37]

V. Moroz and J. Van Schaftingen, Ground states of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153-184.  doi: 10.1016/j.jfa.2013.04.007.

[38]

V. Moroz and J. Van Schaftingen, Existence of ground states for a class of nonlinear Choquard equations., Trans. Amer. Math. Soc., 367 (2015), 6557-6579.  doi: 10.1090/S0002-9947-2014-06289-2.

[39]

V. Moroz and J. Van Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl., 19 (2017), 773-813.  doi: 10.1007/s11784-016-0373-1.

[40]

D. Passaseo, Some sufficient conditions for the existence of positive solutions to the equation $-\Delta u +a(x)u = u^{\frac{N+2}{N-2}}$ in bounded domains, Ann. Inst. Henri Poincaré, 13 (1996), 185-227.  doi: 10.1016/S0294-1449(16)30102-0.

[41]

S. Secchi, A note on Schrödinger-Newton systems with decaying electric potential, Nonlinear Anal., 72 (2010), 3842–3856. doi: 10.1016/j.na.2010.01.021.

[42]

M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonliarities, Math. Z., 187 (1984), 511-517.  doi: 10.1007/BF01174186.

[43]

M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Fourth edition, Springer-Verlag, Berlin, 2008.

[44]

G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353-372.  doi: 10.1007/BF02418013.

[1]

Zifei Shen, Fashun Gao, Minbo Yang. On critical Choquard equation with potential well. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3567-3593. doi: 10.3934/dcds.2018151

[2]

Xiaorong Luo, Anmin Mao, Yanbin Sang. Nonlinear Choquard equations with Hardy-Littlewood-Sobolev critical exponents. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1319-1345. doi: 10.3934/cpaa.2021022

[3]

Ting Guo, Xianhua Tang, Qi Zhang, Zu Gao. Nontrivial solutions for the choquard equation with indefinite linear part and upper critical exponent. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1563-1579. doi: 10.3934/cpaa.2020078

[4]

Kun Cheng, Yinbin Deng. Nodal solutions for a generalized quasilinear Schrödinger equation with critical exponents. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 77-103. doi: 10.3934/dcds.2017004

[5]

Zhilei Liang. On the critical exponents for porous medium equation with a localized reaction in high dimensions. Communications on Pure and Applied Analysis, 2012, 11 (2) : 649-658. doi: 10.3934/cpaa.2012.11.649

[6]

Gui-Dong Li, Chun-Lei Tang. Existence of ground state solutions for Choquard equation involving the general upper critical Hardy-Littlewood-Sobolev nonlinear term. Communications on Pure and Applied Analysis, 2019, 18 (1) : 285-300. doi: 10.3934/cpaa.2019015

[7]

Yu Su, Zhaosheng Feng. Ground state solutions and decay estimation of Choquard equation with critical exponent and Dipole potential. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022112

[8]

Hui Zhang, Jun Wang, Fubao Zhang. Semiclassical states for fractional Choquard equations with critical growth. Communications on Pure and Applied Analysis, 2019, 18 (1) : 519-538. doi: 10.3934/cpaa.2019026

[9]

Jingxue Yin, Chunhua Jin. Critical exponents and traveling wavefronts of a degenerate-singular parabolic equation in non-divergence form. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 213-227. doi: 10.3934/dcdsb.2010.13.213

[10]

Qingquan Chang, Dandan Li, Chunyou Sun. Random attractors for stochastic time-dependent damped wave equation with critical exponents. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2793-2824. doi: 10.3934/dcdsb.2020033

[11]

Minbo Yang, Fukun Zhao, Shunneng Zhao. Classification of solutions to a nonlocal equation with doubly Hardy-Littlewood-Sobolev critical exponents. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5209-5241. doi: 10.3934/dcds.2021074

[12]

Daomin Cao, Hang Li. High energy solutions of the Choquard equation. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 3023-3032. doi: 10.3934/dcds.2018129

[13]

Xiaomei Sun, Yimin Zhang. Elliptic equations with cylindrical potential and multiple critical exponents. Communications on Pure and Applied Analysis, 2013, 12 (5) : 1943-1957. doi: 10.3934/cpaa.2013.12.1943

[14]

Dongsheng Kang. Quasilinear systems involving multiple critical exponents and potentials. Communications on Pure and Applied Analysis, 2013, 12 (2) : 695-710. doi: 10.3934/cpaa.2013.12.695

[15]

Mousomi Bhakta, Debangana Mukherjee. Semilinear nonlocal elliptic equations with critical and supercritical exponents. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1741-1766. doi: 10.3934/cpaa.2017085

[16]

Youpei Zhang, Xianhua Tang, Vicenţiu D. Rădulescu. High and low perturbations of Choquard equations with critical reaction and variable growth. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 1971-2003. doi: 10.3934/dcds.2021180

[17]

Bartosz Bieganowski, Simone Secchi. The semirelativistic Choquard equation with a local nonlinear term. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4279-4302. doi: 10.3934/dcds.2019173

[18]

Phuong Le. Liouville theorems for an integral equation of Choquard type. Communications on Pure and Applied Analysis, 2020, 19 (2) : 771-783. doi: 10.3934/cpaa.2020036

[19]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[20]

Peng Chen, Xiaochun Liu. Positive solutions for Choquard equation in exterior domains. Communications on Pure and Applied Analysis, 2021, 20 (6) : 2237-2256. doi: 10.3934/cpaa.2021065

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (168)
  • HTML views (197)
  • Cited by (0)

[Back to Top]