doi: 10.3934/dcds.2021062

Singularity formation for compressible Euler equations with time-dependent damping

School of Mathematics and Statistics, Shandong Normal University, Jinan 250014, China

* Corresponding author: hmyu@sdnu.edu.cn

Received  September 2020 Revised  January 2021 Published  March 2021

Fund Project: This work is supported in part by the National Natural Science Foundation of China (Grant No. 11671237)

In this paper, we consider the compressible Euler equations with time-dependent damping $ \frac{{\alpha}}{(1+t)^\lambda}u $ in one space dimension. By constructing "decoupled" Riccati type equations for smooth solutions, we provide some sufficient conditions under which the classical solutions must break down in finite time. As a byproduct, we show that the derivatives blow up, somewhat like the formation of shock wave, if the derivatives of initial data are appropriately large at a point even when the damping coefficient grows with a algebraic rate. We study the case $ \lambda\neq1 $ and $ \lambda = 1 $ respectively, moreover, our results have no restrictions on the size of solutions and the positivity/monotonicity of the initial Riemann invariants. In addition, for $ 1<\gamma<3 $ we provide time-dependent lower bounds on density for arbitrary classical solutions, without any additional assumptions on the initial data.

Citation: Ying Sui, Huimin Yu. Singularity formation for compressible Euler equations with time-dependent damping. Discrete & Continuous Dynamical Systems, doi: 10.3934/dcds.2021062
References:
[1]

C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 3rd ed., Springer-Verlag, New York, 2010. doi: 10.1007/978-3-642-04048-1.  Google Scholar

[2]

P. D. Lax, Development of singularities of solutions of nonlinear hyperbolic partial differential equations, J. Math. Phys., 5 (1964), 611-613.  doi: 10.1063/1.1704154.  Google Scholar

[3]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 1983.  Google Scholar

[4]

M. Slemrod, Damped conservation laws in continuum mechanics, Nonlinear Analysis and Mechanics, Vol. Ⅲ, Pitman, New York, 30 (1978), 135–173.  Google Scholar

[5]

G. ChenR. Pan and S. Zhu, Singularity formation for the compressible Euler equations, SIAM J. Math. Anal., 49 (2017), 2591-2614.  doi: 10.1137/16M1062818.  Google Scholar

[6]

L. Lin, Existence and non-existence of global smooth solutions for quasilinear hyperbolic systems, Chin. Ann. of math., 9 (1988), 372-377.   Google Scholar

[7]

L. Hsiao and T.-P. Liu, Convergence to diffusion waves for solutions of a system of hyperbolic conservation laws with damping, Commun. Math. Phys., 143 (1992), 599-605.  doi: 10.1007/BF02099268.  Google Scholar

[8]

P. Marcati and A. Milani, The one-dimensional Darcy's law as the limit of a compressible Euler flow, J. Differ. Equ., 84 (1990), 129-147.  doi: 10.1016/0022-0396(90)90130-H.  Google Scholar

[9]

P. Marcati and M. Mei, Convergence to nonlinear diffusion waves for solutions of the initial boundary problem to the hyperbolic conservation laws with damping, Q. Appl. Math., 58 (2000), 763-784.  doi: 10.1090/qam/1788427.  Google Scholar

[10]

P. Marcati, M. Mei and B. Rubino, Optimal convergence rates to diffusion waves for solutions of the hyperbolic conservation laws with damping, J. Math. Fluid Mech., 7 (2005), S224–S240. doi: 10.1007/s00021-005-0155-9.  Google Scholar

[11]

K. Nishihara, Convergence rates to nonlinear diffusion waves for solutions of system of hyperbolic conservation laws with damping, J. Differ. Equ., 131 (1996), 171-188.  doi: 10.1006/jdeq.1996.0159.  Google Scholar

[12]

K. NishiharaW. K. Wang and T. Yang, Lp-convergence rates to nonlinear diffusion waves for p-system with damping, J. Differ. Equ., 161 (2000), 191-218.  doi: 10.1006/jdeq.1999.3703.  Google Scholar

[13]

T. SiderisB. Thomases and D. Wang, Long time behavior of solutions to the 3D compressible Euler equations with damping, Commun. Partial Differ. Equ., 28 (2003), 795-816.  doi: 10.1081/PDE-120020497.  Google Scholar

[14]

X. Pan, Blow up of solutions to 1-d Euler equations with time-dependent damping, J. Math. Anal. Appl., 442 (2016), 435-445.  doi: 10.1016/j.jmaa.2016.04.075.  Google Scholar

[15]

X. Pan, Global existence of solutions to 1-d Euler equations with time-dependent damping, Nonlinear Anal., 132 (2016), 327-336.  doi: 10.1016/j.na.2015.11.022.  Google Scholar

[16]

Y. Sugiyama, Singularity formation for the 1D compressible Euler equations with variable damping coefficient, Nonlinear Anal., 170 (2018), 70-87.  doi: 10.1016/j.na.2017.12.013.  Google Scholar

[17]

S. ChenH. LiJ. LiM. Mei and K. Zhang, Global and blow-up solutions for compressible Euler equations with time-dependent damping, J. Differential Equations, 268 (2020), 5033-5077.  doi: 10.1016/j.jde.2019.11.002.  Google Scholar

[18]

F. HouI. Witt and H. Yin, Global existence and blowup of smooth solutions of 3-D potential equations with time-dependent damping, Pac. J. Math., 292 (2018), 389-426.  doi: 10.2140/pjm.2018.292.389.  Google Scholar

[19]

F. Hou and H. Yin, On the global existence and blowup of smooth solutions to the multi-dimensional compressible Euler equations with time-depending damping, Nonlinearity, 30 (2017), 2485-2517.  doi: 10.1088/1361-6544/aa6d93.  Google Scholar

[20]

H. CuiH. YinJ. Zhang and C. Zhu, Convergence to nonlinear diffusion waves for solutions of Euler equations with time-depending damping, J. Differ. Equ., 264 (2018), 4564-4602.  doi: 10.1016/j.jde.2017.12.012.  Google Scholar

[21]

G. ChenR. Young and Q. Zhang, Shock formation in the compressible Euler equations and related systems, J. Hyperbolic Differ. Equ., 10 (2013), 149-172.  doi: 10.1142/S0219891613500069.  Google Scholar

[22]

F. HuangR. Pan and Z. Wang, $L^1$ Convergence to the Barenblatt solution for compressible Euler equations with damping, Archive for Rational Mechanics and Analysis, 200 (2011), 665-689.  doi: 10.1007/s00205-010-0355-1.  Google Scholar

[23]

X. Fang and H. Yu, Uniform boundedness in time of weak solutions to a kind of dissipative system, J. Math. Anal. Appl., 461 (2018), 1153-1164.  doi: 10.1016/j.jmaa.2018.01.047.  Google Scholar

[24]

P. L. LionsB. Perthame and E. Tadmor, Kinetic formulation of the isentropic gas dynamics and p-system, Comm. Math. Phys., 163 (1994), 415-431.  doi: 10.1007/BF02102014.  Google Scholar

show all references

References:
[1]

C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 3rd ed., Springer-Verlag, New York, 2010. doi: 10.1007/978-3-642-04048-1.  Google Scholar

[2]

P. D. Lax, Development of singularities of solutions of nonlinear hyperbolic partial differential equations, J. Math. Phys., 5 (1964), 611-613.  doi: 10.1063/1.1704154.  Google Scholar

[3]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 1983.  Google Scholar

[4]

M. Slemrod, Damped conservation laws in continuum mechanics, Nonlinear Analysis and Mechanics, Vol. Ⅲ, Pitman, New York, 30 (1978), 135–173.  Google Scholar

[5]

G. ChenR. Pan and S. Zhu, Singularity formation for the compressible Euler equations, SIAM J. Math. Anal., 49 (2017), 2591-2614.  doi: 10.1137/16M1062818.  Google Scholar

[6]

L. Lin, Existence and non-existence of global smooth solutions for quasilinear hyperbolic systems, Chin. Ann. of math., 9 (1988), 372-377.   Google Scholar

[7]

L. Hsiao and T.-P. Liu, Convergence to diffusion waves for solutions of a system of hyperbolic conservation laws with damping, Commun. Math. Phys., 143 (1992), 599-605.  doi: 10.1007/BF02099268.  Google Scholar

[8]

P. Marcati and A. Milani, The one-dimensional Darcy's law as the limit of a compressible Euler flow, J. Differ. Equ., 84 (1990), 129-147.  doi: 10.1016/0022-0396(90)90130-H.  Google Scholar

[9]

P. Marcati and M. Mei, Convergence to nonlinear diffusion waves for solutions of the initial boundary problem to the hyperbolic conservation laws with damping, Q. Appl. Math., 58 (2000), 763-784.  doi: 10.1090/qam/1788427.  Google Scholar

[10]

P. Marcati, M. Mei and B. Rubino, Optimal convergence rates to diffusion waves for solutions of the hyperbolic conservation laws with damping, J. Math. Fluid Mech., 7 (2005), S224–S240. doi: 10.1007/s00021-005-0155-9.  Google Scholar

[11]

K. Nishihara, Convergence rates to nonlinear diffusion waves for solutions of system of hyperbolic conservation laws with damping, J. Differ. Equ., 131 (1996), 171-188.  doi: 10.1006/jdeq.1996.0159.  Google Scholar

[12]

K. NishiharaW. K. Wang and T. Yang, Lp-convergence rates to nonlinear diffusion waves for p-system with damping, J. Differ. Equ., 161 (2000), 191-218.  doi: 10.1006/jdeq.1999.3703.  Google Scholar

[13]

T. SiderisB. Thomases and D. Wang, Long time behavior of solutions to the 3D compressible Euler equations with damping, Commun. Partial Differ. Equ., 28 (2003), 795-816.  doi: 10.1081/PDE-120020497.  Google Scholar

[14]

X. Pan, Blow up of solutions to 1-d Euler equations with time-dependent damping, J. Math. Anal. Appl., 442 (2016), 435-445.  doi: 10.1016/j.jmaa.2016.04.075.  Google Scholar

[15]

X. Pan, Global existence of solutions to 1-d Euler equations with time-dependent damping, Nonlinear Anal., 132 (2016), 327-336.  doi: 10.1016/j.na.2015.11.022.  Google Scholar

[16]

Y. Sugiyama, Singularity formation for the 1D compressible Euler equations with variable damping coefficient, Nonlinear Anal., 170 (2018), 70-87.  doi: 10.1016/j.na.2017.12.013.  Google Scholar

[17]

S. ChenH. LiJ. LiM. Mei and K. Zhang, Global and blow-up solutions for compressible Euler equations with time-dependent damping, J. Differential Equations, 268 (2020), 5033-5077.  doi: 10.1016/j.jde.2019.11.002.  Google Scholar

[18]

F. HouI. Witt and H. Yin, Global existence and blowup of smooth solutions of 3-D potential equations with time-dependent damping, Pac. J. Math., 292 (2018), 389-426.  doi: 10.2140/pjm.2018.292.389.  Google Scholar

[19]

F. Hou and H. Yin, On the global existence and blowup of smooth solutions to the multi-dimensional compressible Euler equations with time-depending damping, Nonlinearity, 30 (2017), 2485-2517.  doi: 10.1088/1361-6544/aa6d93.  Google Scholar

[20]

H. CuiH. YinJ. Zhang and C. Zhu, Convergence to nonlinear diffusion waves for solutions of Euler equations with time-depending damping, J. Differ. Equ., 264 (2018), 4564-4602.  doi: 10.1016/j.jde.2017.12.012.  Google Scholar

[21]

G. ChenR. Young and Q. Zhang, Shock formation in the compressible Euler equations and related systems, J. Hyperbolic Differ. Equ., 10 (2013), 149-172.  doi: 10.1142/S0219891613500069.  Google Scholar

[22]

F. HuangR. Pan and Z. Wang, $L^1$ Convergence to the Barenblatt solution for compressible Euler equations with damping, Archive for Rational Mechanics and Analysis, 200 (2011), 665-689.  doi: 10.1007/s00205-010-0355-1.  Google Scholar

[23]

X. Fang and H. Yu, Uniform boundedness in time of weak solutions to a kind of dissipative system, J. Math. Anal. Appl., 461 (2018), 1153-1164.  doi: 10.1016/j.jmaa.2018.01.047.  Google Scholar

[24]

P. L. LionsB. Perthame and E. Tadmor, Kinetic formulation of the isentropic gas dynamics and p-system, Comm. Math. Phys., 163 (1994), 415-431.  doi: 10.1007/BF02102014.  Google Scholar

[1]

Fengjuan Meng, Meihua Yang, Chengkui Zhong. Attractors for wave equations with nonlinear damping on time-dependent space. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 205-225. doi: 10.3934/dcdsb.2016.21.205

[2]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, 2021, 20 (3) : 995-1023. doi: 10.3934/cpaa.2021003

[3]

Qing Chen, Zhong Tan. Time decay of solutions to the compressible Euler equations with damping. Kinetic & Related Models, 2014, 7 (4) : 605-619. doi: 10.3934/krm.2014.7.605

[4]

Mohamed Jleli, Bessem Samet. Blow-up for semilinear wave equations with time-dependent damping in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3885-3900. doi: 10.3934/cpaa.2020143

[5]

Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with time-dependent damping. Discrete & Continuous Dynamical Systems, 2012, 32 (12) : 4307-4320. doi: 10.3934/dcds.2012.32.4307

[6]

Yongcai Geng. Singularity formation for relativistic Euler and Euler-Poisson equations with repulsive force. Communications on Pure & Applied Analysis, 2015, 14 (2) : 549-564. doi: 10.3934/cpaa.2015.14.549

[7]

Feng Zhou, Chunyou Sun, Xin Li. Dynamics for the damped wave equations on time-dependent domains. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1645-1674. doi: 10.3934/dcdsb.2018068

[8]

Jun-Ren Luo, Ti-Jun Xiao. Decay rates for second order evolution equations in Hilbert spaces with nonlinear time-dependent damping. Evolution Equations & Control Theory, 2020, 9 (2) : 359-373. doi: 10.3934/eect.2020009

[9]

Cristóbal Rodero, J. Alberto Conejero, Ignacio García-Fernández. Shock wave formation in compliant arteries. Evolution Equations & Control Theory, 2019, 8 (1) : 221-230. doi: 10.3934/eect.2019012

[10]

Moez Daoulatli. Rates of decay for the wave systems with time dependent damping. Discrete & Continuous Dynamical Systems, 2011, 31 (2) : 407-443. doi: 10.3934/dcds.2011.31.407

[11]

Guanghui Hu, Yavar Kian. Determination of singular time-dependent coefficients for wave equations from full and partial data. Inverse Problems & Imaging, 2018, 12 (3) : 745-772. doi: 10.3934/ipi.2018032

[12]

Ruiying Wei, Yin Li, Zheng-an Yao. Global existence and convergence rates of solutions for the compressible Euler equations with damping. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 2949-2967. doi: 10.3934/dcdsb.2020047

[13]

Marcello D'Abbicco, Ruy Coimbra Charão, Cleverson Roberto da Luz. Sharp time decay rates on a hyperbolic plate model under effects of an intermediate damping with a time-dependent coefficient. Discrete & Continuous Dynamical Systems, 2016, 36 (5) : 2419-2447. doi: 10.3934/dcds.2016.36.2419

[14]

Hedy Attouch, Alexandre Cabot, Zaki Chbani, Hassan Riahi. Rate of convergence of inertial gradient dynamics with time-dependent viscous damping coefficient. Evolution Equations & Control Theory, 2018, 7 (3) : 353-371. doi: 10.3934/eect.2018018

[15]

Robert E. Miller. Homogenization of time-dependent systems with Kelvin-Voigt damping by two-scale convergence. Discrete & Continuous Dynamical Systems, 1995, 1 (4) : 485-502. doi: 10.3934/dcds.1995.1.485

[16]

Mourad Choulli, Yavar Kian. Stability of the determination of a time-dependent coefficient in parabolic equations. Mathematical Control & Related Fields, 2013, 3 (2) : 143-160. doi: 10.3934/mcrf.2013.3.143

[17]

Stephen Anco, Maria Rosa, Maria Luz Gandarias. Conservation laws and symmetries of time-dependent generalized KdV equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 607-615. doi: 10.3934/dcdss.2018035

[18]

Tingting Liu, Qiaozhen Ma. Time-dependent asymptotic behavior of the solution for plate equations with linear memory. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4595-4616. doi: 10.3934/dcdsb.2018178

[19]

Feimin Huang, Xiaoding Shi, Yi Wang. Stability of viscous shock wave for compressible Navier-Stokes equations with free boundary. Kinetic & Related Models, 2010, 3 (3) : 409-425. doi: 10.3934/krm.2010.3.409

[20]

Zhong Tan, Yong Wang, Fanhui Xu. Large-time behavior of the full compressible Euler-Poisson system without the temperature damping. Discrete & Continuous Dynamical Systems, 2016, 36 (3) : 1583-1601. doi: 10.3934/dcds.2016.36.1583

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (25)
  • HTML views (52)
  • Cited by (0)

Other articles
by authors

[Back to Top]