In this paper we study the diffeomorphism centralizer of a vector field: given a vector field it is the set of diffeomorphisms that commutes with the flow. Our main theorem states that for a $ C^1 $-generic diffeomorphism having at most finitely many sinks or sources, the diffeomorphism centralizer is quasi-trivial. In certain cases, we can promote the quasi-triviality to triviality. We also obtain a criterion for a diffeomorphism in the centralizer to be a reparametrization of the flow.
Citation: |
[1] |
F. Abdenur, C. Bonatti and S. Crovisier, Global dominated splittings and the $C^1$-Newhouse phenomenon., Proc. Amer. Math. Soc., 134 (2006), 2229-2237.
doi: 10.1090/S0002-9939-06-08445-0.![]() ![]() ![]() |
[2] |
J. Alongi and G. Nelson, Recurrence and Topology, Graduate studies in mathematics, 85, American mathematical society, 2007.
doi: 10.1090/gsm/085.![]() ![]() ![]() |
[3] |
L. Bakker and T. Fisher, Open sets of diffeomorphisms with trivial centralizer in the $C^1$-topology, Nonlinearity, 27 (2014), 2869-2885.
doi: 10.1088/0951-7715/27/12/2869.![]() ![]() ![]() |
[4] |
C. Bonatti and S. Crovisier, Récurrence et généricité., Invent. Math., 158 (2004), 33-104.
doi: 10.1007/s00222-004-0368-1.![]() ![]() ![]() |
[5] |
C. Bonatti, S. Crovisier and A. Wilkinson, The $C^1$ generic diffeomorphism has trivial centralizer, Publications Mathématiques de l'IHÉS, 109 (2009), 185-244.
doi: 10.1007/s10240-009-0021-z.![]() ![]() ![]() |
[6] |
C. Bonatti, L. Diaz and E. Pujals, A $C^1$-generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math., 158 (2003), 355-418.
doi: 10.4007/annals.2003.158.355.![]() ![]() ![]() |
[7] |
C. Bonatti, N. Gourmelon and T. Vivier, Perturbations of the derivative along periodic orbits, Ergodic Theory Dynam. Systems, 26 (2006), 1307-1337.
doi: 10.1017/S0143385706000253.![]() ![]() ![]() |
[8] |
W. Bonomo, J. Rocha and P. Varandas, The centralizer of Komuro-expansive flows and expansive $\Bbb R^d$ actions, Math. Z., 289 (2018), 1059-1088.
doi: 10.1007/s00209-017-1988-7.![]() ![]() ![]() |
[9] |
W. Bonomo and P. Varandas, $C^1$-generic sectional Axiom A flows have trivial centralizer, Port. Math., 76 (2019), 29-48.
doi: 10.4171/PM/2025.![]() ![]() ![]() |
[10] |
W. Bonomo and P. Varandas, A criterion for the triviality of the centralizer for vector fields and applications, J. Differential Equations, 267 (2019), 1748-1766.
doi: 10.1016/j.jde.2019.02.022.![]() ![]() ![]() |
[11] |
L. Burslem, Centralizers of partially hyperbolic diffeomorphisms, Ergodic Theory Dynam. Systems, 24 (2004), 55-87.
doi: 10.1017/S0143385703000191.![]() ![]() ![]() |
[12] |
S. Crovisier, Periodic orbits and chain-transitive sets of $C^1$-diffeomorphisms, Publications Mathématiques de l'IHÉS, 104 (2006), 87-141.
doi: 10.1007/s10240-006-0002-4.![]() ![]() ![]() |
[13] |
S. Crovisier and D. Yang, Homoclinic tangencies and singular hyperbolicity for three-dimensional vector fields, C. R. Math. Acad. Sci. Paris, 353 (2015), 85-88, arXiv: 1702.05994.
doi: 10.1016/j.crma.2014.10.015.![]() ![]() ![]() |
[14] |
T. Fisher, Trivial centralizers for axiom A diffeomorphisms, Nonlinearity, 21 (2008), 2505-2517.
doi: 10.1088/0951-7715/21/11/002.![]() ![]() ![]() |
[15] |
T. Fisher, Trivial centralizers for codimension-one attractors, Bull. Lond. Math. Soc., 21 (2009), 51-56.
doi: 10.1112/blms/bdn100.![]() ![]() ![]() |
[16] |
K. Kato and A. Morimoto, Topological stability of Anosov flows and their centralizers, Topology, 12 (1973), 255-273.
doi: 10.1016/0040-9383(73)90012-8.![]() ![]() ![]() |
[17] |
N. Kopell, Commuting diffeomorphisms, Globa Analysis, Proc. Sympos. Pure Math., XIV (1970), 165-184.
![]() ![]() |
[18] |
M. Leguil, D. Obata and B. Santiago, On the centralizer of vector fields: Criteria of triviality and genericity results, Math. Z., 297 (2021), 283-337.
doi: 10.1007/s00209-020-02511-x.![]() ![]() ![]() |
[19] |
I. Mundet I Riera, Automorphisms of generic gradient vector fields with prescribed finite symmetries, Revista Matemática Iberoamericana, 35 (2019), 1281-1308.
doi: 10.4171/rmi/1083.![]() ![]() ![]() |
[20] |
M. Oka, Expansive flows and their centralizers,, Nagoya Math. J., 64 (1976), 1-15.
doi: 10.1017/S0027763000017517.![]() ![]() ![]() |
[21] |
J. Palis and W. de Melo, Geometric Theory of Dynamical Systems, Springer-Verlag, New York-Berlin, 1982.
![]() ![]() |
[22] |
J. Palis and J. C. Yoccoz, Centralizers of {A}nosov diffeomorphisms on tori, Ann. Sci. École Norm. Sup. (4), 22 (1989), 98-108.
doi: 10.24033/asens. 1577.![]() ![]() ![]() |
[23] |
J. Palis and J. C. Yoccoz, Rigidity of centralizers of diffeomorphisms, Ann. Sci. École Norm. Sup. (4), 22 (1989), 81-98.
doi: 10.24033/asens. 1576.![]() ![]() ![]() |
[24] |
M. Peixoto, Structural stability on two-dimensional manifolds, Bol. Soc. Mat. Mexicana (2), 5 (1960), 188-189.
![]() ![]() |
[25] |
P. Sad, Centralizers of vector fields, Topology, 18 (1979), 97-104.
doi: 10.1016/0040-9383(79)90027-2.![]() ![]() ![]() |
[26] |
S. Smale, Dynamics retrospective: Great problems, attempts that failed, Nonlinear Science: The Next Decade, Los Alamos, NM, 1990, Physica D., 51 (1991), 267-273.
doi: 10.1016/0167-2789(91)90238-5.![]() ![]() ![]() |
[27] |
S. Smale, Mathematical problems for the next century, Math. Intelligencer, 20 (1998), 7-15.
doi: 10.1007/BF03025291.![]() ![]() ![]() |
[28] |
R. Thom, Sur Les Intégrales Premières d'un Système Différentiel sur une Variété Compacte, Unpublished manuscript.
![]() |