November  2021, 41(11): 5037-5055. doi: 10.3934/dcds.2021067

A phase transition for circle maps with a flat spot and different critical exponents

1. 

Stockton Road, Other lines, Durham, DH1 3LE, United Kingdom's

2. 

Route Melen, Yaounde, MO 8390, Cameroon

* Corresponding author: Liviana Palmisano

Received  July 2019 Revised  January 2021 Published  November 2021 Early access  April 2021

Fund Project: The authors would like to thank the referees whose valuable comments helped to improve the exposition of the paper. The first author is supported by the Trygger Foundation. The second author is supported by the Centre d'Excellence Africain en Science Mathématiques et Applications (CEA-SMA). Part of the research for this paper took place at ICTP. The authors would like to thank the ICTP and in particular Prof. Stefano Luzzatto for their hospitality and support

We study circle maps with a flat interval where the critical exponents at the two boundary points of the flat spot might be different. The space of such systems is partitioned in two connected parts whose common boundary only depends on the critical exponents. At this boundary there is a phase transition in the geometry of the system. Differently from the previous approaches, this is achieved by studying the asymptotical behavior of the renormalization operator.

Citation: Liviana Palmisano, Bertuel Tangue Ndawa. A phase transition for circle maps with a flat spot and different critical exponents. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5037-5055. doi: 10.3934/dcds.2021067
References:
[1]

S. GuarinoP. Crovisier and L. Palmisano, Ergodic properties of bimodal circle endomorphisms satisfying a Diophantine condition, Ergodic Theory Dynam. Systems, 39 (2019), 1462-1500.  doi: 10.1017/etds.2017.80.

[2]

W. de Melo and S. van Strien, One-Dimensional Dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete, 25. Springer-Verlag, Berlin, 1993. doi: 10.1007/978-3-642-78043-1.

[3]

J. Graczyk, Dynamics of circle maps with flat spots, Fund. Math., 209 (2010), 267-290.  doi: 10.4064/fm209-3-4.

[4]

J. GraczykL. B. JonkerG. ŚwiątekF. M. Tangerman and J. J. P. Veerman, Differentiable circle maps with a flat interval, Commun. Math. Phys., 173 (1995), 599-622.  doi: 10.1007/BF02101658.

[5]

M.-R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Études Sci. Publ. Math., 49 (1979), 5-233. 

[6]

O. Kozlovski and S. van Strien, Asymmetric unimodal maps with non-universal period-doubling scaling laws, Comm. Math. Phys., 379 (2020), 103–143, arXiv: math/1907.05812. doi: 10.1007/s00220-020-03835-9.

[7]

M. Lyubich and J. Milnor, The Fibonacci unimodal map, J. Amer. Math. Soc., 6 (1993), 425-457.  doi: 10.1090/S0894-0347-1993-1182670-0.

[8]

M. MartensS. van StrienW. de Melo and P. Mendes, On Cherry flows, Ergodic Theory Dynam. Systems, 10 (1990), 531-554.  doi: 10.1017/S0143385700005733.

[9]

M. Martens and B. Winckler, Instability of renormalization, preprint, arXiv: 1609.04473.

[10]

M. Martens and L. Palmisano, Invariant manifolds for non-differentiable operators, preprint, arXiv: 1704.06328.

[11]

P. Mendes, A metric property of Cherry vector fields on the torus, J. Differential Equations, 89 (1991), 305-316.  doi: 10.1016/0022-0396(91)90123-Q.

[12]

P. C. Moreira and A. A. G. Ruas, Metric properties of Cherry flows, J. Differential Equations, 97 (1992), 16-26.  doi: 10.1016/0022-0396(92)90081-W.

[13]

L. Palmisano, A phase transition for circle maps and Cherry flows, Comm. Math. Phys., 321 (2013), 135-155.  doi: 10.1007/s00220-013-1685-2.

[14]

L. Palmisano, Cherry Flows with non-trivial attractors, Fund. Math., 244 (2019), 243-253.  doi: 10.4064/fm531-3-2018.

[15]

L. Palmisano, On physical measures for Cherry flows, Fund. Math., 232 (2016), 167-179.  doi: 10.4064/fm232-2-5.

[16]

L. Palmisano, Quasi-symmetric conjugacy for circle maps with a flat interval, Ergodic Theory Dynam. Systems, 39 (2019), 425-445.  doi: 10.1017/etds.2017.36.

[17]

L. Palmisano, Unbounded regime for circle maps with a flat interval, Discrete Contin. Dyn. Syst., 35 (2015), 2099-2122.  doi: 10.3934/dcds.2015.35.2099.

[18]

J. J. P. Veerman and F. M. Tangerman, Scalings in circle maps. Ⅰ, Comm. Math. Phys., 134 (1990), 89-107.  doi: 10.1007/BF02102091.

[19]

F. M. Tangerman and J. J. P. Veerman, Scalings in circle maps. Ⅱ, Comm. Math. Phys., 141 (1991), 279-291.  doi: 10.1007/BF02101506.

[20]

B. N. Tangue, Cherry maps with different critical exponents: Bifurcation of geometry, Rus. J. Nonlin. Dyn., 16 (2020), 651-672.  doi: 10.20537/nd200409.

[21]

B. N. Tangue, Rigidity of fibonacci circle maps with a flat piece and different critical exponents, preprint, arXiv: math/2103.02347.

[22]

J. J. P. Veerman, Irrational rotation numbers, Nonlinearity, 2 (1989), 419-428.  doi: 10.1088/0951-7715/2/3/003.

show all references

References:
[1]

S. GuarinoP. Crovisier and L. Palmisano, Ergodic properties of bimodal circle endomorphisms satisfying a Diophantine condition, Ergodic Theory Dynam. Systems, 39 (2019), 1462-1500.  doi: 10.1017/etds.2017.80.

[2]

W. de Melo and S. van Strien, One-Dimensional Dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete, 25. Springer-Verlag, Berlin, 1993. doi: 10.1007/978-3-642-78043-1.

[3]

J. Graczyk, Dynamics of circle maps with flat spots, Fund. Math., 209 (2010), 267-290.  doi: 10.4064/fm209-3-4.

[4]

J. GraczykL. B. JonkerG. ŚwiątekF. M. Tangerman and J. J. P. Veerman, Differentiable circle maps with a flat interval, Commun. Math. Phys., 173 (1995), 599-622.  doi: 10.1007/BF02101658.

[5]

M.-R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Études Sci. Publ. Math., 49 (1979), 5-233. 

[6]

O. Kozlovski and S. van Strien, Asymmetric unimodal maps with non-universal period-doubling scaling laws, Comm. Math. Phys., 379 (2020), 103–143, arXiv: math/1907.05812. doi: 10.1007/s00220-020-03835-9.

[7]

M. Lyubich and J. Milnor, The Fibonacci unimodal map, J. Amer. Math. Soc., 6 (1993), 425-457.  doi: 10.1090/S0894-0347-1993-1182670-0.

[8]

M. MartensS. van StrienW. de Melo and P. Mendes, On Cherry flows, Ergodic Theory Dynam. Systems, 10 (1990), 531-554.  doi: 10.1017/S0143385700005733.

[9]

M. Martens and B. Winckler, Instability of renormalization, preprint, arXiv: 1609.04473.

[10]

M. Martens and L. Palmisano, Invariant manifolds for non-differentiable operators, preprint, arXiv: 1704.06328.

[11]

P. Mendes, A metric property of Cherry vector fields on the torus, J. Differential Equations, 89 (1991), 305-316.  doi: 10.1016/0022-0396(91)90123-Q.

[12]

P. C. Moreira and A. A. G. Ruas, Metric properties of Cherry flows, J. Differential Equations, 97 (1992), 16-26.  doi: 10.1016/0022-0396(92)90081-W.

[13]

L. Palmisano, A phase transition for circle maps and Cherry flows, Comm. Math. Phys., 321 (2013), 135-155.  doi: 10.1007/s00220-013-1685-2.

[14]

L. Palmisano, Cherry Flows with non-trivial attractors, Fund. Math., 244 (2019), 243-253.  doi: 10.4064/fm531-3-2018.

[15]

L. Palmisano, On physical measures for Cherry flows, Fund. Math., 232 (2016), 167-179.  doi: 10.4064/fm232-2-5.

[16]

L. Palmisano, Quasi-symmetric conjugacy for circle maps with a flat interval, Ergodic Theory Dynam. Systems, 39 (2019), 425-445.  doi: 10.1017/etds.2017.36.

[17]

L. Palmisano, Unbounded regime for circle maps with a flat interval, Discrete Contin. Dyn. Syst., 35 (2015), 2099-2122.  doi: 10.3934/dcds.2015.35.2099.

[18]

J. J. P. Veerman and F. M. Tangerman, Scalings in circle maps. Ⅰ, Comm. Math. Phys., 134 (1990), 89-107.  doi: 10.1007/BF02102091.

[19]

F. M. Tangerman and J. J. P. Veerman, Scalings in circle maps. Ⅱ, Comm. Math. Phys., 141 (1991), 279-291.  doi: 10.1007/BF02101506.

[20]

B. N. Tangue, Cherry maps with different critical exponents: Bifurcation of geometry, Rus. J. Nonlin. Dyn., 16 (2020), 651-672.  doi: 10.20537/nd200409.

[21]

B. N. Tangue, Rigidity of fibonacci circle maps with a flat piece and different critical exponents, preprint, arXiv: math/2103.02347.

[22]

J. J. P. Veerman, Irrational rotation numbers, Nonlinearity, 2 (1989), 419-428.  doi: 10.1088/0951-7715/2/3/003.

Figure 1.  A function in $ \mathscr{ L}^{(X)} $
Figure 2.  The curve $ \Gamma $. The quadrant $ Q_- $ is below $ \Gamma $ and the quadrant $ Q_+ $ is above $ \Gamma $
[1]

Boris Kruglikov, Martin Rypdal. A piece-wise affine contracting map with positive entropy. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 393-394. doi: 10.3934/dcds.2006.16.393

[2]

Hans Koch. On the renormalization of Hamiltonian flows, and critical invariant tori. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 633-646. doi: 10.3934/dcds.2002.8.633

[3]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[4]

Yanfang Peng. On elliptic systems with Sobolev critical exponent. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3357-3373. doi: 10.3934/dcds.2016.36.3357

[5]

Stephen Baigent. Convex geometry of the carrying simplex for the May-Leonard map. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1697-1723. doi: 10.3934/dcdsb.2018288

[6]

Hans Koch. On hyperbolicity in the renormalization of near-critical area-preserving maps. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7029-7056. doi: 10.3934/dcds.2016106

[7]

Oliver Díaz-Espinosa, Rafael de la Llave. Renormalization and central limit theorem for critical dynamical systems with weak external noise. Journal of Modern Dynamics, 2007, 1 (3) : 477-543. doi: 10.3934/jmd.2007.1.477

[8]

Wenmin Gong, Guangcun Lu. On Dirac equation with a potential and critical Sobolev exponent. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2231-2263. doi: 10.3934/cpaa.2015.14.2231

[9]

Maurizio Grasselli, Vittorino Pata. On the damped semilinear wave equation with critical exponent. Conference Publications, 2003, 2003 (Special) : 351-358. doi: 10.3934/proc.2003.2003.351

[10]

Maoding Zhen, Jinchun He, Haoyuan Xu, Meihua Yang. Positive ground state solutions for fractional Laplacian system with one critical exponent and one subcritical exponent. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6523-6539. doi: 10.3934/dcds.2019283

[11]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[12]

Qi-Lin Xie, Xing-Ping Wu, Chun-Lei Tang. Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2773-2786. doi: 10.3934/cpaa.2013.12.2773

[13]

Xu Zhang, Shiwang Ma, Qilin Xie. Bound state solutions of Schrödinger-Poisson system with critical exponent. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 605-625. doi: 10.3934/dcds.2017025

[14]

Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103

[15]

Sergey Zelik. Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent. Communications on Pure and Applied Analysis, 2004, 3 (4) : 921-934. doi: 10.3934/cpaa.2004.3.921

[16]

T. Ogawa. The degenerate drift-diffusion system with the Sobolev critical exponent. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 875-886. doi: 10.3934/dcdss.2011.4.875

[17]

Yinbin Deng, Wentao Huang. Positive ground state solutions for a quasilinear elliptic equation with critical exponent. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4213-4230. doi: 10.3934/dcds.2017179

[18]

Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with time-dependent damping. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4307-4320. doi: 10.3934/dcds.2012.32.4307

[19]

Xiaomei Sun, Wenyi Chen. Positive solutions for singular elliptic equations with critical Hardy-Sobolev exponent. Communications on Pure and Applied Analysis, 2011, 10 (2) : 527-540. doi: 10.3934/cpaa.2011.10.527

[20]

Ting Guo, Xianhua Tang, Qi Zhang, Zu Gao. Nontrivial solutions for the choquard equation with indefinite linear part and upper critical exponent. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1563-1579. doi: 10.3934/cpaa.2020078

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (177)
  • HTML views (245)
  • Cited by (0)

Other articles
by authors

[Back to Top]