On a closed $ 3 $-dimensional Riemannian manifold $ (M,g) $ we investigate the limit of the Einstein-Lichnerowicz equation
$ \begin{equation} \triangle_g u + h u = f u^5 + \frac{\theta a}{u^7} \end{equation} $
as the momentum parameter $ \theta \to 0 $. Under a positive mass assumption on $ \triangle_g +h $, we prove that sequences of positive solutions to this equation converge in $ C^2(M) $, as $ \theta \to 0 $, either to zero or to a positive solution of the limiting equation $ \triangle_g u + h u = f u^5 $. We also prove that the minimizing solution of (1) constructed by the author in [
Citation: |
[1] |
T. Aubin, Nonlinear Analysis on Manifolds. Monge-Ampère Equations, Grundlehren der Mathematischen Wissenschaften, 252. Springer-Verlag, New York, 1982.
doi: 10.1007/978-1-4612-5734-9.![]() ![]() ![]() |
[2] |
R. Bartnik and J. Isenberg, The constraint equations, The Einstein Equations and the Large Scale Behavior of Gravitational Fields, Birkhäuser, Basel, (2004), 1-38.
![]() ![]() |
[3] |
P. Bizoń, S. Pletka and W. Simon, Initial data for rotating cosmologies, Classical Quantum Gravity, 32 (2015), 175015, 21 pp.
doi: 10.1088/0264-9381/32/17/175015.![]() ![]() ![]() |
[4] |
L. A. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.
doi: 10.1002/cpa.3160420304.![]() ![]() ![]() |
[5] |
Y. Choquet-Bruhat and R. Geroch, Global aspects of the Cauchy problem in general relativity, Comm. Math. Phys., 14 (1969), 329-335.
doi: 10.1007/BF01645389.![]() ![]() ![]() |
[6] |
P. T. Chruściel and R. Gicquaud, Bifurcating solutions of the Lichnerowicz equation, Ann. Henri Poincaré, 18 (2017), 643-679.
doi: 10.1007/s00023-016-0501-x.![]() ![]() ![]() |
[7] |
O. Druet and E. Hebey, Stability and instability for Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds, Math. Z., 263 (2009), 33-67.
doi: 10.1007/s00209-008-0409-3.![]() ![]() ![]() |
[8] |
O. Druet and B. Premoselli, Stability of the Einstein-Lichnerowicz constraint system, Math. Ann., 362 (2015), 839-886.
doi: 10.1007/s00208-014-1145-0.![]() ![]() ![]() |
[9] |
L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 143. Chapman & Hall/CRC, Boca Raton, FL, 2011.
doi: 10.1201/b10802.![]() ![]() ![]() |
[10] |
J. F. Escobar and R. M. Schoen, Conformal metrics with prescribed scalar curvature, Invent. Math., 86 (1986), 243-254.
doi: 10.1007/BF01389071.![]() ![]() ![]() |
[11] |
Q. Han and F. Lin, Elliptic Partial Differential Equations, 2nd edition, Courant Lecture Notes in Mathematics, 1. Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2011.
![]() ![]() |
[12] |
E. Hebey, Compactness and Stability for Nonlinear Elliptic Equations, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2014.
doi: 10.4171/134.![]() ![]() ![]() |
[13] |
E. Hebey, F. Pacard and D. Pollack, A variational analysis of Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds, Comm. Math. Phys., 278 (2008), 117-132.
doi: 10.1007/s00220-007-0377-1.![]() ![]() ![]() |
[14] |
Y. Li and M. Zhu, Yamabe type equations on three-dimensional Riemannian manifolds, Commun. Contemp. Math., 1 (1999), 1-50.
doi: 10.1142/S021919979900002X.![]() ![]() |
[15] |
B. Premoselli, Effective multiplicity for the Einstein-scalar field Lichnerowicz equation, Calc. Var. Partial Differential Equations, 53 (2015), 29-64.
doi: 10.1007/s00526-014-0740-y.![]() ![]() ![]() |
[16] |
B. Premoselli, Stability and instability of the Einstein-Lichnerowicz constraint system, Int. Math. Res. Not. IMRN, (2016), 1951-2025.
doi: 10.1093/imrn/rnv193.![]() ![]() ![]() |
[17] |
B. Premoselli and J. Wei, Non-compactness and infinite number of conformal initial data sets in high dimensions, J. Funct. Anal., 270 (2016), 718-747.
doi: 10.1016/j.jfa.2015.06.018.![]() ![]() ![]() |
[18] |
F. Robert, Existence et asymptotiques optimales des fonctions de Green des opérateurs elliptiques d'ordre deux, http://www.iecn.u-nancy.fr/ frobert/ConstrucGreen.pdf.
![]() |
[19] |
R. Schoen and S. T. Yau, On the proof of the positive mass conjecture in general relativity, Comm. Math. Phys., 65 (1979), 45-76, http://projecteuclid.org/euclid.cmp/1103904790.
doi: 10.1007/BF01940959.![]() ![]() ![]() |