• Previous Article
    Carleman estimates for a class of variable coefficient degenerate elliptic operators with applications to unique continuation
  • DCDS Home
  • This Issue
  • Next Article
    Transfers of energy through fast diffusion channels in some resonant PDEs on the circle
November  2021, 41(11): 5087-5103. doi: 10.3934/dcds.2021069

Einstein-Lichnerowicz type singular perturbations of critical nonlinear elliptic equations in dimension 3

Université Libre de Bruxelles, Service d'Analyse CP 214, Boulevard du Triomphe, B-1050 Bruxelles, Belgium

Received  November 2020 Revised  February 2021 Published  November 2021 Early access  April 2021

Fund Project: The author was supported by a FNRS CdR grant J.0135.19, by the Fonds Thélam and by the ULB ARC grant "Partial Differential Equations in Interaction". The author warmly thanks the anonymous referee whose insightful comments greatly improved the readability of the paper

On a closed
$ 3 $
-dimensional Riemannian manifold
$ (M,g) $
we investigate the limit of the Einstein-Lichnerowicz equation
$ \begin{equation} \triangle_g u + h u = f u^5 + \frac{\theta a}{u^7} \end{equation} $
as the momentum parameter
$ \theta \to 0 $
. Under a positive mass assumption on
$ \triangle_g +h $
, we prove that sequences of positive solutions to this equation converge in
$ C^2(M) $
, as
$ \theta \to 0 $
, either to zero or to a positive solution of the limiting equation
$ \triangle_g u + h u = f u^5 $
. We also prove that the minimizing solution of (1) constructed by the author in [15] converges uniformly to zero as
$ \theta \to 0 $
.
Citation: Bruno Premoselli. Einstein-Lichnerowicz type singular perturbations of critical nonlinear elliptic equations in dimension 3. Discrete & Continuous Dynamical Systems, 2021, 41 (11) : 5087-5103. doi: 10.3934/dcds.2021069
References:
[1]

T. Aubin, Nonlinear Analysis on Manifolds. Monge-Ampère Equations, Grundlehren der Mathematischen Wissenschaften, 252. Springer-Verlag, New York, 1982. doi: 10.1007/978-1-4612-5734-9.  Google Scholar

[2]

R. Bartnik and J. Isenberg, The constraint equations, The Einstein Equations and the Large Scale Behavior of Gravitational Fields, Birkhäuser, Basel, (2004), 1-38.  Google Scholar

[3]

P. Bizoń, S. Pletka and W. Simon, Initial data for rotating cosmologies, Classical Quantum Gravity, 32 (2015), 175015, 21 pp. doi: 10.1088/0264-9381/32/17/175015.  Google Scholar

[4]

L. A. CaffarelliB. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.  doi: 10.1002/cpa.3160420304.  Google Scholar

[5]

Y. Choquet-Bruhat and R. Geroch, Global aspects of the Cauchy problem in general relativity, Comm. Math. Phys., 14 (1969), 329-335.  doi: 10.1007/BF01645389.  Google Scholar

[6]

P. T. Chruściel and R. Gicquaud, Bifurcating solutions of the Lichnerowicz equation, Ann. Henri Poincaré, 18 (2017), 643-679.  doi: 10.1007/s00023-016-0501-x.  Google Scholar

[7]

O. Druet and E. Hebey, Stability and instability for Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds, Math. Z., 263 (2009), 33-67.  doi: 10.1007/s00209-008-0409-3.  Google Scholar

[8]

O. Druet and B. Premoselli, Stability of the Einstein-Lichnerowicz constraint system, Math. Ann., 362 (2015), 839-886.  doi: 10.1007/s00208-014-1145-0.  Google Scholar

[9]

L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 143. Chapman & Hall/CRC, Boca Raton, FL, 2011. doi: 10.1201/b10802.  Google Scholar

[10]

J. F. Escobar and R. M. Schoen, Conformal metrics with prescribed scalar curvature, Invent. Math., 86 (1986), 243-254.  doi: 10.1007/BF01389071.  Google Scholar

[11]

Q. Han and F. Lin, Elliptic Partial Differential Equations, 2nd edition, Courant Lecture Notes in Mathematics, 1. Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2011.  Google Scholar

[12]

E. Hebey, Compactness and Stability for Nonlinear Elliptic Equations, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2014. doi: 10.4171/134.  Google Scholar

[13]

E. HebeyF. Pacard and D. Pollack, A variational analysis of Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds, Comm. Math. Phys., 278 (2008), 117-132.  doi: 10.1007/s00220-007-0377-1.  Google Scholar

[14]

Y. Li and M. Zhu, Yamabe type equations on three-dimensional Riemannian manifolds, Commun. Contemp. Math., 1 (1999), 1-50.  doi: 10.1142/S021919979900002X.  Google Scholar

[15]

B. Premoselli, Effective multiplicity for the Einstein-scalar field Lichnerowicz equation, Calc. Var. Partial Differential Equations, 53 (2015), 29-64.  doi: 10.1007/s00526-014-0740-y.  Google Scholar

[16]

B. Premoselli, Stability and instability of the Einstein-Lichnerowicz constraint system, Int. Math. Res. Not. IMRN, (2016), 1951-2025. doi: 10.1093/imrn/rnv193.  Google Scholar

[17]

B. Premoselli and J. Wei, Non-compactness and infinite number of conformal initial data sets in high dimensions, J. Funct. Anal., 270 (2016), 718-747.  doi: 10.1016/j.jfa.2015.06.018.  Google Scholar

[18]

F. Robert, Existence et asymptotiques optimales des fonctions de Green des opérateurs elliptiques d'ordre deux, http://www.iecn.u-nancy.fr/ frobert/ConstrucGreen.pdf. Google Scholar

[19]

R. Schoen and S. T. Yau, On the proof of the positive mass conjecture in general relativity, Comm. Math. Phys., 65 (1979), 45-76, http://projecteuclid.org/euclid.cmp/1103904790. doi: 10.1007/BF01940959.  Google Scholar

show all references

References:
[1]

T. Aubin, Nonlinear Analysis on Manifolds. Monge-Ampère Equations, Grundlehren der Mathematischen Wissenschaften, 252. Springer-Verlag, New York, 1982. doi: 10.1007/978-1-4612-5734-9.  Google Scholar

[2]

R. Bartnik and J. Isenberg, The constraint equations, The Einstein Equations and the Large Scale Behavior of Gravitational Fields, Birkhäuser, Basel, (2004), 1-38.  Google Scholar

[3]

P. Bizoń, S. Pletka and W. Simon, Initial data for rotating cosmologies, Classical Quantum Gravity, 32 (2015), 175015, 21 pp. doi: 10.1088/0264-9381/32/17/175015.  Google Scholar

[4]

L. A. CaffarelliB. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.  doi: 10.1002/cpa.3160420304.  Google Scholar

[5]

Y. Choquet-Bruhat and R. Geroch, Global aspects of the Cauchy problem in general relativity, Comm. Math. Phys., 14 (1969), 329-335.  doi: 10.1007/BF01645389.  Google Scholar

[6]

P. T. Chruściel and R. Gicquaud, Bifurcating solutions of the Lichnerowicz equation, Ann. Henri Poincaré, 18 (2017), 643-679.  doi: 10.1007/s00023-016-0501-x.  Google Scholar

[7]

O. Druet and E. Hebey, Stability and instability for Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds, Math. Z., 263 (2009), 33-67.  doi: 10.1007/s00209-008-0409-3.  Google Scholar

[8]

O. Druet and B. Premoselli, Stability of the Einstein-Lichnerowicz constraint system, Math. Ann., 362 (2015), 839-886.  doi: 10.1007/s00208-014-1145-0.  Google Scholar

[9]

L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 143. Chapman & Hall/CRC, Boca Raton, FL, 2011. doi: 10.1201/b10802.  Google Scholar

[10]

J. F. Escobar and R. M. Schoen, Conformal metrics with prescribed scalar curvature, Invent. Math., 86 (1986), 243-254.  doi: 10.1007/BF01389071.  Google Scholar

[11]

Q. Han and F. Lin, Elliptic Partial Differential Equations, 2nd edition, Courant Lecture Notes in Mathematics, 1. Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2011.  Google Scholar

[12]

E. Hebey, Compactness and Stability for Nonlinear Elliptic Equations, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2014. doi: 10.4171/134.  Google Scholar

[13]

E. HebeyF. Pacard and D. Pollack, A variational analysis of Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds, Comm. Math. Phys., 278 (2008), 117-132.  doi: 10.1007/s00220-007-0377-1.  Google Scholar

[14]

Y. Li and M. Zhu, Yamabe type equations on three-dimensional Riemannian manifolds, Commun. Contemp. Math., 1 (1999), 1-50.  doi: 10.1142/S021919979900002X.  Google Scholar

[15]

B. Premoselli, Effective multiplicity for the Einstein-scalar field Lichnerowicz equation, Calc. Var. Partial Differential Equations, 53 (2015), 29-64.  doi: 10.1007/s00526-014-0740-y.  Google Scholar

[16]

B. Premoselli, Stability and instability of the Einstein-Lichnerowicz constraint system, Int. Math. Res. Not. IMRN, (2016), 1951-2025. doi: 10.1093/imrn/rnv193.  Google Scholar

[17]

B. Premoselli and J. Wei, Non-compactness and infinite number of conformal initial data sets in high dimensions, J. Funct. Anal., 270 (2016), 718-747.  doi: 10.1016/j.jfa.2015.06.018.  Google Scholar

[18]

F. Robert, Existence et asymptotiques optimales des fonctions de Green des opérateurs elliptiques d'ordre deux, http://www.iecn.u-nancy.fr/ frobert/ConstrucGreen.pdf. Google Scholar

[19]

R. Schoen and S. T. Yau, On the proof of the positive mass conjecture in general relativity, Comm. Math. Phys., 65 (1979), 45-76, http://projecteuclid.org/euclid.cmp/1103904790. doi: 10.1007/BF01940959.  Google Scholar

[1]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[2]

Van Duong Dinh. On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 689-708. doi: 10.3934/cpaa.2019034

[3]

Antonio Vitolo, Maria E. Amendola, Giulio Galise. On the uniqueness of blow-up solutions of fully nonlinear elliptic equations. Conference Publications, 2013, 2013 (special) : 771-780. doi: 10.3934/proc.2013.2013.771

[4]

Helin Guo, Yimin Zhang, Huansong Zhou. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1875-1897. doi: 10.3934/cpaa.2018089

[5]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[6]

Dapeng Du, Yifei Wu, Kaijun Zhang. On blow-up criterion for the nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2016, 36 (7) : 3639-3650. doi: 10.3934/dcds.2016.36.3639

[7]

Lili Du, Zheng-An Yao. Localization of blow-up points for a nonlinear nonlocal porous medium equation. Communications on Pure & Applied Analysis, 2007, 6 (1) : 183-190. doi: 10.3934/cpaa.2007.6.183

[8]

Olivier Druet, Emmanuel Hebey and Frederic Robert. A $C^0$-theory for the blow-up of second order elliptic equations of critical Sobolev growth. Electronic Research Announcements, 2003, 9: 19-25.

[9]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[10]

Mikhaël Balabane, Mustapha Jazar, Philippe Souplet. Oscillatory blow-up in nonlinear second order ODE's: The critical case. Discrete & Continuous Dynamical Systems, 2003, 9 (3) : 577-584. doi: 10.3934/dcds.2003.9.577

[11]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[12]

Xiaoqiang Dai, Chao Yang, Shaobin Huang, Tao Yu, Yuanran Zhu. Finite time blow-up for a wave equation with dynamic boundary condition at critical and high energy levels in control systems. Electronic Research Archive, 2020, 28 (1) : 91-102. doi: 10.3934/era.2020006

[13]

Jorge A. Esquivel-Avila. Blow-up in damped abstract nonlinear equations. Electronic Research Archive, 2020, 28 (1) : 347-367. doi: 10.3934/era.2020020

[14]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete & Continuous Dynamical Systems, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

[15]

Zhijun Zhang. Boundary blow-up for elliptic problems involving exponential nonlinearities with nonlinear gradient terms and singular weights. Communications on Pure & Applied Analysis, 2007, 6 (2) : 521-529. doi: 10.3934/cpaa.2007.6.521

[16]

Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete & Continuous Dynamical Systems, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1

[17]

Frédéric Abergel, Jean-Michel Rakotoson. Gradient blow-up in Zygmund spaces for the very weak solution of a linear elliptic equation. Discrete & Continuous Dynamical Systems, 2013, 33 (5) : 1809-1818. doi: 10.3934/dcds.2013.33.1809

[18]

Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103

[19]

Björn Sandstede, Arnd Scheel. Evans function and blow-up methods in critical eigenvalue problems. Discrete & Continuous Dynamical Systems, 2004, 10 (4) : 941-964. doi: 10.3934/dcds.2004.10.941

[20]

Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (82)
  • HTML views (213)
  • Cited by (0)

Other articles
by authors

[Back to Top]