We study the stochastic stability in the zero-noise limit from a quantitative point of view.
We consider smooth expanding maps of the circle perturbed by additive noise. We show that in this case the zero-noise limit has a quadratic speed of convergence, as suggested by numerical experiments and heuristics published by Lin, in 2005 (see [
We also consider the zero-noise limit from a quantitative point of view for piecewise expanding maps showing estimates for the speed of convergence in this case.
Citation: |
[1] |
R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
![]() ![]() |
[2] |
J. F. Alves, Strong statistical stability of non-uniformly expanding maps, Nonlinearity, 17 (2004), 1193-1215.
doi: 10.1088/0951-7715/17/4/004.![]() ![]() ![]() |
[3] |
J. F. Alves and V. Araújo, Random perturbations of nonuniformly expanding maps, Astérisque, 286 (2003), 25-62.
![]() ![]() |
[4] |
J. F. Alves and M. A. Khan, Statistical instability for contracting Lorenz flows, Nonlinearity, 32 (2019), 4413-4444.
doi: 10.1088/1361-6544/ab2f48.![]() ![]() ![]() |
[5] |
J. F. Alves and H. Vilarinho, Strong stochastic stability for non-uniformly expanding maps, Ergodic Theory Dynam. Systems, 33 (2013), 647-692.
doi: 10.1017/S0143385712000077.![]() ![]() ![]() |
[6] |
V. Araújo and A. Tahzibi, Stochastic stability at the boundary of expanding maps, Nonlinearity, 18 (2005), 939-958.
doi: 10.1088/0951-7715/18/3/001.![]() ![]() ![]() |
[7] |
W. Bahsoun, S. Galatolo, I. Nisoli and X. Niu, A rigorous computational approach to linear response, Nonlinearity, 31 (2018), 1073-1109.
doi: 10.1088/1361-6544/aa9a88.![]() ![]() ![]() |
[8] |
V. Baladi, Linear response, or else, Proceedings of the International Congress of Mathematicians–Seoul 2014, Ⅲ (2014), 525-545.
![]() ![]() |
[9] |
V. Baladi and M. Viana, Strong stochastic stability and rate of mixing for unimodal maps, Ann. Sci. École Norm. Sup., 29 (1996), 483-517.
doi: 10.24033/asens.1745.![]() ![]() ![]() |
[10] |
V. Baladi and L.-S. Young, On the spectra of randomly perturbed expanding maps, Commun. Math. Phys., 156 (1993), 355-385.
doi: 10.1007/BF02098487.![]() ![]() ![]() |
[11] |
M. Blank and G. Keller, Stochastic stability versus localization in one-dimensional chaotic dynamical systems, Nonlinearity, 10 (1997), 81-107.
doi: 10.1088/0951-7715/10/1/006.![]() ![]() ![]() |
[12] |
M. Blank and G. Keller, Random perturbations of chaotic dynamical systems: Stability of the spectrum, Nonlinearity, 11 (1998), 1351-1364.
doi: 10.1088/0951-7715/11/5/010.![]() ![]() ![]() |
[13] |
J.-P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors, Rev. Modern Phys., 57 (1985), 617-656.
doi: 10.1103/RevModPhys.57.617.![]() ![]() ![]() |
[14] |
L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, 1992.
![]() ![]() |
[15] |
S. Galatolo, Statistical properties of dynamics. Introduction to the functional analytic approach, arXiv: 1510.02615
![]() |
[16] |
S. Galatolo, Quantitative statistical stability and speed of convergence to equilibrium for partially hyperbolic skew products, J. Éc. Polytech. Math., 5 (2018), 377–405.
doi: 10.5802/jep.73.![]() ![]() ![]() |
[17] |
S. Galatolo, Quantitative statistical stability and convergence to equilibrium. An application to maps with indifferent fixed points, Chaos Solitons Fractals, 103 (2017), 596-601.
doi: 10.1016/j.chaos.2017.07.005.![]() ![]() ![]() |
[18] |
S. Galatolo and R. Lucena, Spectral gap and quantitative statistical stability for systems with contracting fibers and Lorenz-like maps,, Discrete Contin. Dyn. Syst., 40 (2020), 1309-1360.
doi: 10.3934/dcds.2020079.![]() ![]() ![]() |
[19] |
S. Galatolo, M. Monge and I. Nisoli, Existence of noise induced order, a computer aided proof, Nonlinearity, 33 (2020), 4237-4276.
doi: 10.1088/1361-6544/ab86cd.![]() ![]() ![]() |
[20] |
S. Galatolo and J. Sedro, Quadratic response of random and deterministic dynamical systems, Chaos, 30 (2020), 023113, 15 pp.
doi: 10.1063/1.5122658.![]() ![]() ![]() |
[21] |
S. Gouëzel and C. Liverani, Banach spaces adapted to Anosov systems, Ergodic Theory Dynam. Systems, 26 (2006), 189-217.
doi: 10.1017/S0143385705000374.![]() ![]() ![]() |
[22] |
M. Jézéquel, Parameter regularity of dynamical determinants of expanding maps of the circle and an application to linear response, Discrete Contin. Dyn. Syst., 39 (2019), 927-958.
doi: 10.3934/dcds.2019039.![]() ![]() ![]() |
[23] |
Yu. Kifer, On small random perturbations of some smooth dynamical systems, Math. USSR Ivestija, 8 (1974), 1083-1107.
![]() |
[24] |
K. Krzyzewski, Some results on expanding mappings, Ast Risque, 50 (1977), 205-218.
![]() ![]() |
[25] |
K. K. Lin, Convergence of invariant densities in the small-noise limit, Nonlinearity, 18 (2005), 659-683.
doi: 10.1088/0951-7715/18/2/011.![]() ![]() ![]() |
[26] |
C. Liverani, Invariant measures and their properties. A functional analytic point of view, Dynamical Systems, Part Ⅱ, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., Pisa, (2003), 185–237.
![]() ![]() |
[27] |
C. Liverani, B. Saussol and S. Vaienti, A probabilistic approach to intermittency, Ergodic Theory Dynam. Systems, 19 (1999), 671-685.
doi: 10.1017/S0143385799133856.![]() ![]() ![]() |
[28] |
R. J. Metzger, Stochastic stability for contracting Lorenz maps and flows, Comm. Math. Phys., 212 (2000), 277-296.
doi: 10.1007/s002200000220.![]() ![]() ![]() |
[29] |
M. Pollicott and P. Vytovna, Linear response and periodic points, Nonlinearity, 29 (2016), 3047-3066.
doi: 10.1088/0951-7715/29/10/3047.![]() ![]() ![]() |
[30] |
D. Ruelle, Nonequilibrium statistical mechanics near equilibrium: Computing higher-order terms, Nonlinearity, 11 (1998), 5-18.
doi: 10.1088/0951-7715/11/1/002.![]() ![]() ![]() |
[31] |
J. Sedro, Regularity result for fixed points, with applications to linear response, Nonlinearity, 31 (2018), 1417-1440.
doi: 10.1088/1361-6544/aaa10b.![]() ![]() ![]() |
[32] |
W. Shen, On stochastic stability of non-uniformly expanding interval maps, Proc. Lond. Math. Soc., 107 (2013), 1091-1134.
doi: 10.1112/plms/pdt013.![]() ![]() ![]() |
[33] |
W. Shen and S. van Strien, On stochastic stability of expanding circle maps with neutral fixed points, Dyn. Syst., 28 (2013), 423-452.
doi: 10.1080/14689367.2013.806733.![]() ![]() ![]() |
[34] |
M. Viana, Lectures on Lyapunov Exponents, Cambridge Studies in Advanced Mathematics 145, Cambridge University Press, 2014.
doi: 10.1017/CBO9781139976602.![]() ![]() ![]() |
[35] |
M. Viana, Stochastic Dynamics of Deterministic Systems, IMPA, Rio de Janeiro, 1997.
![]() |
[36] |
L.-S. Young, What are SRB measures, and which dynamical systems have them?, J. Statist. Phys., 108 (2002), 733-754.
doi: 10.1023/A:1019762724717.![]() ![]() ![]() |
[37] |
L.-S. Young, Stochastic stability of hyperbolic attractors, Ergodic Theory Dynam. Systems, 6 (1986), 311-319.
doi: 10.1017/S0143385700003473.![]() ![]() ![]() |
Lipschitz approximation of a discontinuity, graphical representation of
Lipschitz approximation of a discontinuity, rescaling of the problem