In this paper, we study the two phase flow problem in the ideal incompressible magnetohydrodynamics. We propose a Syrovatskij type stability condition, and prove the local well-posedness of the two phase flow problem with initial data satisfies such condition. This result shows that the magnetic field has a stabilizing effect on Kelvin-Helmholtz instability even the fluids on each side of the free interface have different densities.
Citation: |
[1] |
W. I. Axford, Note on a problem of magnetohydrodynamic stability, Canad. J. Phys., 40 (1962), 654-655.
doi: 10.1139/p62-064.![]() ![]() |
[2] |
T. Alazard, N. Burq and C. Zuily, On the Cauchy problem for gravity water waves, Invent. Math., 198 (2014), 71-163.
doi: 10.1007/s00222-014-0498-z.![]() ![]() ![]() |
[3] |
D. M. Ambrose and N. Masmoudi, Well-posedness of 3D vortex sheets with surface tension, Comm. Math. Sci., 5 (2007), 391-430.
doi: 10.4310/CMS.2007.v5.n2.a9.![]() ![]() ![]() |
[4] |
C. Cheng, D. Coutand and S. Shkoller, Navier-Stokes equations interacting with a nonlinear elastic biofluid shell, SIAM J. Math. Anal., 39 (2007), 742-800.
doi: 10.1137/060656085.![]() ![]() ![]() |
[5] |
V. Carbone, G. Einaudi and P. Veltri, Effects of turbulence development in solar surges, Solar. Phys., 111 (1987), 31-44.
doi: 10.1007/978-94-009-3999-8_4.![]() ![]() |
[6] |
D. Christodoulou and H. Lindblad, On the motion of the free surface of a liquid, Comm. Pure Appl. Math., 53 (2000), 1536-1602.
doi: 10.1002/1097-0312(200012)53:12<1536::AID-CPA2>3.0.CO;2-Q.![]() ![]() ![]() |
[7] |
J.-F. Coulombel, A. Morando, P. Secchi and P. Trebeschi, A priori estimates for 3D incompressible current-vortex sheets, Comm. Math. Phys., 311 (2012), 247-275.
doi: 10.1007/s00220-011-1340-8.![]() ![]() ![]() |
[8] |
S. Friedlander and D. Serre, Handbook of Mathematical Fluid Dynamics, North Holland/Elsevier, 2004.
![]() ![]() |
[9] |
F. Jiang, S. Jiang and Y. Wang, On the Rayleigh-Taylor instability for the incompressible viscous magnetohydrodynamic equations, Comm. Partial Differential Equations, 39 (2014), 399-438.
doi: 10.1080/03605302.2013.863913.![]() ![]() ![]() |
[10] |
A. L. La Belle-Hamer, Z. F. Fu and L. C. Lee, A mechanism for patchy reconnection at the dayside magnetopause, Geophysical Research Letters, 15 (1988), 152-155.
doi: 10.1029/GL015i002p00152.![]() ![]() |
[11] |
H. Li, W. Wang and Z. Zhang, Well-posedness of the free boundary problem in incompressible elastodynamics, J. Differential Equations, 267 (2019), 6604-6643.
doi: 10.1016/j.jde.2019.07.001.![]() ![]() ![]() |
[12] |
A. Majda and A. Bertozzi, Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, 27, Cambridge University Press, Cambridge, 2002.
![]() ![]() |
[13] |
G. V. Miloshevsky and A. Hassanein, Modelling of Kelvin-Helmholtz instability and splashing of melt layers from plasma-facing components in tokamaks under plasma impact, Nuclear Fusion, 50 (2010), 115005.
doi: 10.1088/0029-5515/50/11/115005.![]() ![]() |
[14] |
A. Morando, Y. Trakhinin and P. Trebeschi, Stability of incompressible current-vortex sheets, J. Math. Anal. Appl., 347 (2008), 502-520.
doi: 10.1016/j.jmaa.2008.06.002.![]() ![]() ![]() |
[15] |
L. Ofman, X. L. Chen, P. J. Morrison and et al., Resistive tearing mode instability with shear flow and viscosity, Physics of Fluids B: Plasma Physics, 3 (1991), 1364.
![]() |
[16] |
S. I. Syrovatskij, The stability of tangential discontinuities in a magnetohydrodynamic medium, Z. Eksperim. Teoret. Fiz., 24 (1953), 622-629.
![]() |
[17] |
Y. Sun, W. Wang and Z. Zhang, Nonlinear stability of the current-vortex sheet to the incompressible MHD equations, Comm. Pure Appl. Math., 71 (2018), 356-403.
doi: 10.1002/cpa.21710.![]() ![]() ![]() |
[18] |
J. Shatah and C. Zeng, Geometry and a priori estimates for free boundary problems of the Euler's equation, Comm. Pure Appl. Math., 61 (2008), 698-744.
doi: 10.1002/cpa.20213.![]() ![]() ![]() |
[19] |
J. Shatah and C. Zeng, A priori estimates for fluid interface problems, Comm. Pure Appl. Math., 61 (2008), 848-876.
doi: 10.1002/cpa.20241.![]() ![]() ![]() |
[20] |
Y. Trakhinin, On the existence of incompressible current-vortex sheets: study of a linearized free boundary value problem, Math. Methods Appl. Sci., 28 (2005), 917-945.
doi: 10.1002/mma.600.![]() ![]() ![]() |
[21] |
S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in $2$-D, Invent. Math., 130 (1997), 39-72.
doi: 10.1007/s002220050177.![]() ![]() ![]() |
[22] |
S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Amer. Math. Soc., 12 (1999), 445-495.
doi: 10.1090/S0894-0347-99-00290-8.![]() ![]() ![]() |
[23] |
H. Yang, Z. Xu, E. K. Lim, et al., Observation of the Kelvin-Helmholtz Instability in a Solar Prominence, The Astrophysical Journal, 857 (2018), 115.
doi: 10.3847/1538-4357/aab789.![]() ![]() |
[24] |
P. Zhang and Z. Zhang, On the free boundary problem of three-dimensional incompressible Euler equations, Comm. Pure Appl. Math., 61 (2008), 877-940.
doi: 10.1002/cpa.20226.![]() ![]() ![]() |