-
Previous Article
Period tripling and quintupling renormalizations below $ C^2 $ space
- DCDS Home
- This Issue
-
Next Article
Classification of transitive group actions
Well-posedness of the two-phase flow problem in incompressible MHD
1. | School of Mathematical Sciences, Peking University, Beijing 100871, China |
2. | Department of Mathematics, Zhejiang University, Hangzhou 310027, China |
In this paper, we study the two phase flow problem in the ideal incompressible magnetohydrodynamics. We propose a Syrovatskij type stability condition, and prove the local well-posedness of the two phase flow problem with initial data satisfies such condition. This result shows that the magnetic field has a stabilizing effect on Kelvin-Helmholtz instability even the fluids on each side of the free interface have different densities.
References:
[1] |
W. I. Axford,
Note on a problem of magnetohydrodynamic stability, Canad. J. Phys., 40 (1962), 654-655.
doi: 10.1139/p62-064. |
[2] |
T. Alazard, N. Burq and C. Zuily,
On the Cauchy problem for gravity water waves, Invent. Math., 198 (2014), 71-163.
doi: 10.1007/s00222-014-0498-z. |
[3] |
D. M. Ambrose and N. Masmoudi,
Well-posedness of 3D vortex sheets with surface tension, Comm. Math. Sci., 5 (2007), 391-430.
doi: 10.4310/CMS.2007.v5.n2.a9. |
[4] |
C. Cheng, D. Coutand and S. Shkoller,
Navier-Stokes equations interacting with a nonlinear elastic biofluid shell, SIAM J. Math. Anal., 39 (2007), 742-800.
doi: 10.1137/060656085. |
[5] |
V. Carbone, G. Einaudi and P. Veltri,
Effects of turbulence development in solar surges, Solar. Phys., 111 (1987), 31-44.
doi: 10.1007/978-94-009-3999-8_4. |
[6] |
D. Christodoulou and H. Lindblad,
On the motion of the free surface of a liquid, Comm. Pure Appl. Math., 53 (2000), 1536-1602.
doi: 10.1002/1097-0312(200012)53:12<1536::AID-CPA2>3.0.CO;2-Q. |
[7] |
J.-F. Coulombel, A. Morando, P. Secchi and P. Trebeschi,
A priori estimates for 3D incompressible current-vortex sheets, Comm. Math. Phys., 311 (2012), 247-275.
doi: 10.1007/s00220-011-1340-8. |
[8] |
S. Friedlander and D. Serre, Handbook of Mathematical Fluid Dynamics, North Holland/Elsevier, 2004. |
[9] |
F. Jiang, S. Jiang and Y. Wang,
On the Rayleigh-Taylor instability for the incompressible viscous magnetohydrodynamic equations, Comm. Partial Differential Equations, 39 (2014), 399-438.
doi: 10.1080/03605302.2013.863913. |
[10] |
A. L. La Belle-Hamer, Z. F. Fu and L. C. Lee,
A mechanism for patchy reconnection at the dayside magnetopause, Geophysical Research Letters, 15 (1988), 152-155.
doi: 10.1029/GL015i002p00152. |
[11] |
H. Li, W. Wang and Z. Zhang,
Well-posedness of the free boundary problem in incompressible elastodynamics, J. Differential Equations, 267 (2019), 6604-6643.
doi: 10.1016/j.jde.2019.07.001. |
[12] |
A. Majda and A. Bertozzi, Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, 27, Cambridge University Press, Cambridge, 2002.
![]() ![]() |
[13] |
G. V. Miloshevsky and A. Hassanein, Modelling of Kelvin-Helmholtz instability and splashing of melt layers from plasma-facing components in tokamaks under plasma impact, Nuclear Fusion, 50 (2010), 115005.
doi: 10.1088/0029-5515/50/11/115005. |
[14] |
A. Morando, Y. Trakhinin and P. Trebeschi,
Stability of incompressible current-vortex sheets, J. Math. Anal. Appl., 347 (2008), 502-520.
doi: 10.1016/j.jmaa.2008.06.002. |
[15] |
L. Ofman, X. L. Chen, P. J. Morrison and et al., Resistive tearing mode instability with shear flow and viscosity, Physics of Fluids B: Plasma Physics, 3 (1991), 1364. |
[16] |
S. I. Syrovatskij,
The stability of tangential discontinuities in a magnetohydrodynamic medium, Z. Eksperim. Teoret. Fiz., 24 (1953), 622-629.
|
[17] |
Y. Sun, W. Wang and Z. Zhang,
Nonlinear stability of the current-vortex sheet to the incompressible MHD equations, Comm. Pure Appl. Math., 71 (2018), 356-403.
doi: 10.1002/cpa.21710. |
[18] |
J. Shatah and C. Zeng,
Geometry and a priori estimates for free boundary problems of the Euler's equation, Comm. Pure Appl. Math., 61 (2008), 698-744.
doi: 10.1002/cpa.20213. |
[19] |
J. Shatah and C. Zeng,
A priori estimates for fluid interface problems, Comm. Pure Appl. Math., 61 (2008), 848-876.
doi: 10.1002/cpa.20241. |
[20] |
Y. Trakhinin,
On the existence of incompressible current-vortex sheets: study of a linearized free boundary value problem, Math. Methods Appl. Sci., 28 (2005), 917-945.
doi: 10.1002/mma.600. |
[21] |
S. Wu,
Well-posedness in Sobolev spaces of the full water wave problem in $2$-D, Invent. Math., 130 (1997), 39-72.
doi: 10.1007/s002220050177. |
[22] |
S. Wu,
Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Amer. Math. Soc., 12 (1999), 445-495.
doi: 10.1090/S0894-0347-99-00290-8. |
[23] |
H. Yang, Z. Xu, E. K. Lim, et al., Observation of the Kelvin-Helmholtz Instability in a Solar Prominence, The Astrophysical Journal, 857 (2018), 115.
doi: 10.3847/1538-4357/aab789. |
[24] |
P. Zhang and Z. Zhang,
On the free boundary problem of three-dimensional incompressible Euler equations, Comm. Pure Appl. Math., 61 (2008), 877-940.
doi: 10.1002/cpa.20226. |
show all references
References:
[1] |
W. I. Axford,
Note on a problem of magnetohydrodynamic stability, Canad. J. Phys., 40 (1962), 654-655.
doi: 10.1139/p62-064. |
[2] |
T. Alazard, N. Burq and C. Zuily,
On the Cauchy problem for gravity water waves, Invent. Math., 198 (2014), 71-163.
doi: 10.1007/s00222-014-0498-z. |
[3] |
D. M. Ambrose and N. Masmoudi,
Well-posedness of 3D vortex sheets with surface tension, Comm. Math. Sci., 5 (2007), 391-430.
doi: 10.4310/CMS.2007.v5.n2.a9. |
[4] |
C. Cheng, D. Coutand and S. Shkoller,
Navier-Stokes equations interacting with a nonlinear elastic biofluid shell, SIAM J. Math. Anal., 39 (2007), 742-800.
doi: 10.1137/060656085. |
[5] |
V. Carbone, G. Einaudi and P. Veltri,
Effects of turbulence development in solar surges, Solar. Phys., 111 (1987), 31-44.
doi: 10.1007/978-94-009-3999-8_4. |
[6] |
D. Christodoulou and H. Lindblad,
On the motion of the free surface of a liquid, Comm. Pure Appl. Math., 53 (2000), 1536-1602.
doi: 10.1002/1097-0312(200012)53:12<1536::AID-CPA2>3.0.CO;2-Q. |
[7] |
J.-F. Coulombel, A. Morando, P. Secchi and P. Trebeschi,
A priori estimates for 3D incompressible current-vortex sheets, Comm. Math. Phys., 311 (2012), 247-275.
doi: 10.1007/s00220-011-1340-8. |
[8] |
S. Friedlander and D. Serre, Handbook of Mathematical Fluid Dynamics, North Holland/Elsevier, 2004. |
[9] |
F. Jiang, S. Jiang and Y. Wang,
On the Rayleigh-Taylor instability for the incompressible viscous magnetohydrodynamic equations, Comm. Partial Differential Equations, 39 (2014), 399-438.
doi: 10.1080/03605302.2013.863913. |
[10] |
A. L. La Belle-Hamer, Z. F. Fu and L. C. Lee,
A mechanism for patchy reconnection at the dayside magnetopause, Geophysical Research Letters, 15 (1988), 152-155.
doi: 10.1029/GL015i002p00152. |
[11] |
H. Li, W. Wang and Z. Zhang,
Well-posedness of the free boundary problem in incompressible elastodynamics, J. Differential Equations, 267 (2019), 6604-6643.
doi: 10.1016/j.jde.2019.07.001. |
[12] |
A. Majda and A. Bertozzi, Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, 27, Cambridge University Press, Cambridge, 2002.
![]() ![]() |
[13] |
G. V. Miloshevsky and A. Hassanein, Modelling of Kelvin-Helmholtz instability and splashing of melt layers from plasma-facing components in tokamaks under plasma impact, Nuclear Fusion, 50 (2010), 115005.
doi: 10.1088/0029-5515/50/11/115005. |
[14] |
A. Morando, Y. Trakhinin and P. Trebeschi,
Stability of incompressible current-vortex sheets, J. Math. Anal. Appl., 347 (2008), 502-520.
doi: 10.1016/j.jmaa.2008.06.002. |
[15] |
L. Ofman, X. L. Chen, P. J. Morrison and et al., Resistive tearing mode instability with shear flow and viscosity, Physics of Fluids B: Plasma Physics, 3 (1991), 1364. |
[16] |
S. I. Syrovatskij,
The stability of tangential discontinuities in a magnetohydrodynamic medium, Z. Eksperim. Teoret. Fiz., 24 (1953), 622-629.
|
[17] |
Y. Sun, W. Wang and Z. Zhang,
Nonlinear stability of the current-vortex sheet to the incompressible MHD equations, Comm. Pure Appl. Math., 71 (2018), 356-403.
doi: 10.1002/cpa.21710. |
[18] |
J. Shatah and C. Zeng,
Geometry and a priori estimates for free boundary problems of the Euler's equation, Comm. Pure Appl. Math., 61 (2008), 698-744.
doi: 10.1002/cpa.20213. |
[19] |
J. Shatah and C. Zeng,
A priori estimates for fluid interface problems, Comm. Pure Appl. Math., 61 (2008), 848-876.
doi: 10.1002/cpa.20241. |
[20] |
Y. Trakhinin,
On the existence of incompressible current-vortex sheets: study of a linearized free boundary value problem, Math. Methods Appl. Sci., 28 (2005), 917-945.
doi: 10.1002/mma.600. |
[21] |
S. Wu,
Well-posedness in Sobolev spaces of the full water wave problem in $2$-D, Invent. Math., 130 (1997), 39-72.
doi: 10.1007/s002220050177. |
[22] |
S. Wu,
Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Amer. Math. Soc., 12 (1999), 445-495.
doi: 10.1090/S0894-0347-99-00290-8. |
[23] |
H. Yang, Z. Xu, E. K. Lim, et al., Observation of the Kelvin-Helmholtz Instability in a Solar Prominence, The Astrophysical Journal, 857 (2018), 115.
doi: 10.3847/1538-4357/aab789. |
[24] |
P. Zhang and Z. Zhang,
On the free boundary problem of three-dimensional incompressible Euler equations, Comm. Pure Appl. Math., 61 (2008), 877-940.
doi: 10.1002/cpa.20226. |
[1] |
Joshua Du. Kelvin-Helmholtz instability waves of supersonic multiple jets. Conference Publications, 2003, 2003 (Special) : 234-245. doi: 10.3934/proc.2003.2003.234 |
[2] |
Feimin Huang, Dehua Wang, Difan Yuan. Nonlinear stability and existence of vortex sheets for inviscid liquid-gas two-phase flow. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3535-3575. doi: 10.3934/dcds.2019146 |
[3] |
Theodore Tachim Medjo. A two-phase flow model with delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3273-3294. doi: 10.3934/dcdsb.2017137 |
[4] |
T. Tachim Medjo. Averaging of an homogeneous two-phase flow model with oscillating external forces. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3665-3690. doi: 10.3934/dcds.2012.32.3665 |
[5] |
Esther S. Daus, Josipa-Pina Milišić, Nicola Zamponi. Global existence for a two-phase flow model with cross-diffusion. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 957-979. doi: 10.3934/dcdsb.2019198 |
[6] |
Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control and Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006 |
[7] |
Daniela De Silva, Fausto Ferrari, Sandro Salsa. Recent progresses on elliptic two-phase free boundary problems. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 6961-6978. doi: 10.3934/dcds.2019239 |
[8] |
Barbara Lee Keyfitz, Richard Sanders, Michael Sever. Lack of hyperbolicity in the two-fluid model for two-phase incompressible flow. Discrete and Continuous Dynamical Systems - B, 2003, 3 (4) : 541-563. doi: 10.3934/dcdsb.2003.3.541 |
[9] |
K. Domelevo. Well-posedness of a kinetic model of dispersed two-phase flow with point-particles and stability of travelling waves. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 591-607. doi: 10.3934/dcdsb.2002.2.591 |
[10] |
Yangyang Qiao, Huanyao Wen, Steinar Evje. Compressible and viscous two-phase flow in porous media based on mixture theory formulation. Networks and Heterogeneous Media, 2019, 14 (3) : 489-536. doi: 10.3934/nhm.2019020 |
[11] |
Guochun Wu, Yinghui Zhang. Global analysis of strong solutions for the viscous liquid-gas two-phase flow model in a bounded domain. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1411-1429. doi: 10.3934/dcdsb.2018157 |
[12] |
Helmut Abels, Harald Garcke, Josef Weber. Existence of weak solutions for a diffuse interface model for two-phase flow with surfactants. Communications on Pure and Applied Analysis, 2019, 18 (1) : 195-225. doi: 10.3934/cpaa.2019011 |
[13] |
Stefan Berres, Ricardo Ruiz-Baier, Hartmut Schwandt, Elmer M. Tory. An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks and Heterogeneous Media, 2011, 6 (3) : 401-423. doi: 10.3934/nhm.2011.6.401 |
[14] |
Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. An improved homogenization result for immiscible compressible two-phase flow in porous media. Networks and Heterogeneous Media, 2017, 12 (1) : 147-171. doi: 10.3934/nhm.2017006 |
[15] |
Marie Henry, Danielle Hilhorst, Robert Eymard. Singular limit of a two-phase flow problem in porous medium as the air viscosity tends to zero. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 93-113. doi: 10.3934/dcdss.2012.5.93 |
[16] |
Theodore Tachim Medjo. On the convergence of a stochastic 3D globally modified two-phase flow model. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 395-430. doi: 10.3934/dcds.2019016 |
[17] |
G. Deugoué, B. Jidjou Moghomye, T. Tachim Medjo. Approximation of a stochastic two-phase flow model by a splitting-up method. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1135-1170. doi: 10.3934/cpaa.2021010 |
[18] |
Brahim Amaziane, Mladen Jurak, Leonid Pankratov, Anja Vrbaški. Some remarks on the homogenization of immiscible incompressible two-phase flow in double porosity media. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 629-665. doi: 10.3934/dcdsb.2018037 |
[19] |
Zhen Cheng, Wenjun Wang. The Cauchy problem of a two-phase flow model for a mixture of non-interacting compressible fluids. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4155-4176. doi: 10.3934/cpaa.2021151 |
[20] |
Shu Wang, Yixuan Zhao. Asymptotic stability of planar rarefaction wave to a multi-dimensional two-phase flow. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022091 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]