-
Previous Article
Extinction or coexistence in periodic Kolmogorov systems of competitive type
- DCDS Home
- This Issue
-
Next Article
The nonlinear fractional relativistic Schrödinger equation: Existence, multiplicity, decay and concentration results
Dispersive estimates for the wave and the Klein-Gordon equations in large time inside the Friedlander domain
Sorbonne Université, CNRS, LJLL, F-75005 Paris, France |
We prove global in time dispersion for the wave and the Klein-Gordon equation inside the Friedlander domain by taking full advantage of the space-time localization of caustics and a precise estimate of the number of waves that may cross at a given, large time. Moreover, we uncover a significant difference between Klein-Gordon and the wave equation in the low frequency, large time regime, where Klein-Gordon exhibits a worse decay than the wave, unlike in the flat space.
References:
[1] |
M. D. Blair, H. F. Smith and Ch. D. Sogge,
Strichartz estimates for the wave equation on manifolds with boundary, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1817-1829.
doi: 10.1016/j.anihpc.2008.12.004. |
[2] |
G. Eskin,
Parametrix and propagation of singularities for the interior mixed hyperbolic problem, J. Analyse Math., 32 (1977), 17-62.
doi: 10.1007/BF02803574. |
[3] |
O. Ivanovici, R. Lascar, G. Lebeau and F. Planchon., Dispersion for the wave equation inside strictly convex domains II: The general case, preprint, https://arXiv.org/abs/1605.08800. |
[4] |
O. Ivanovici, G. Lebeau and F. Planchon, Strichartz estimates for the wave equation inside strictly convex 2d model domain, preprint, https://arXiv.org/abs/2008.03598. |
[5] |
O. Ivanovici, G. Lebeau and F. Planchon,
Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case, Ann. of Math. (2), 180 (2014), 323-380.
doi: 10.4007/annals.2014.180.1.7. |
[6] |
O. Ivanovici, G. Lebeau and F. Planchon, New counterexamples to Strichartz estimates for the wave equation on a 2D model convex domain, to appear in J. Ec. polytech. Math., https://arXiv.org/abs/2008.02716. |
[7] |
J. Kato and T. Ozawa,
Endpoint strichartz estimates for the Klein-Gordon equation in two space dimensions and some applications, J. Math. Pures Appl., 95 (2011), 48-71.
doi: 10.1016/j.matpur.2010.10.001. |
[8] |
S. Machihara, K. Nakanishi and T. Ozawa,
Small global solutions and the nonrelativistic limit for the nonlinear dirac equation, Rev. Mat. Iberoamericana, 19 (2003), 179-194.
doi: 10.4171/RMI/342. |
[9] |
R. B. Melrose,
Equivalence of glancing hypersurfaces, Invent. Math., 37 (1976), 165-191.
doi: 10.1007/BF01390317. |
[10] |
R. B. Melrose and J. Sjöstrand,
Singularities of boundary value problems. I, Comm. Pure Appl. Math., 31 (1978), 593-617.
doi: 10.1002/cpa.3160310504. |
[11] |
R. B. Melrose and J. Sjöstrand,
Singularities of boundary value problems. II, Comm. Pure Appl. Math., 35 (1982), 129-168.
doi: 10.1002/cpa.3160350202. |
[12] |
R. B. Melrose and M. E. Taylor, Boundary Problems for Wave Equations With Grazing and Gliding Rays, Available at https://www.unc.edu/math/Faculty/met/wavep.html. |
[13] |
R. B. Melrose and M. E. Taylor,
The radiation pattern of a diffracted wave near the shadow boundary, Comm. Partial Differential Equations, 11 (1986), 599-672.
doi: 10.1080/03605308608820439. |
[14] |
O. Vallée and M. Soares, Airy Functions and Applications to Physics, Imperial College Press, London; Distributed by World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2004.
doi: 10.1142/p345. |
show all references
References:
[1] |
M. D. Blair, H. F. Smith and Ch. D. Sogge,
Strichartz estimates for the wave equation on manifolds with boundary, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1817-1829.
doi: 10.1016/j.anihpc.2008.12.004. |
[2] |
G. Eskin,
Parametrix and propagation of singularities for the interior mixed hyperbolic problem, J. Analyse Math., 32 (1977), 17-62.
doi: 10.1007/BF02803574. |
[3] |
O. Ivanovici, R. Lascar, G. Lebeau and F. Planchon., Dispersion for the wave equation inside strictly convex domains II: The general case, preprint, https://arXiv.org/abs/1605.08800. |
[4] |
O. Ivanovici, G. Lebeau and F. Planchon, Strichartz estimates for the wave equation inside strictly convex 2d model domain, preprint, https://arXiv.org/abs/2008.03598. |
[5] |
O. Ivanovici, G. Lebeau and F. Planchon,
Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case, Ann. of Math. (2), 180 (2014), 323-380.
doi: 10.4007/annals.2014.180.1.7. |
[6] |
O. Ivanovici, G. Lebeau and F. Planchon, New counterexamples to Strichartz estimates for the wave equation on a 2D model convex domain, to appear in J. Ec. polytech. Math., https://arXiv.org/abs/2008.02716. |
[7] |
J. Kato and T. Ozawa,
Endpoint strichartz estimates for the Klein-Gordon equation in two space dimensions and some applications, J. Math. Pures Appl., 95 (2011), 48-71.
doi: 10.1016/j.matpur.2010.10.001. |
[8] |
S. Machihara, K. Nakanishi and T. Ozawa,
Small global solutions and the nonrelativistic limit for the nonlinear dirac equation, Rev. Mat. Iberoamericana, 19 (2003), 179-194.
doi: 10.4171/RMI/342. |
[9] |
R. B. Melrose,
Equivalence of glancing hypersurfaces, Invent. Math., 37 (1976), 165-191.
doi: 10.1007/BF01390317. |
[10] |
R. B. Melrose and J. Sjöstrand,
Singularities of boundary value problems. I, Comm. Pure Appl. Math., 31 (1978), 593-617.
doi: 10.1002/cpa.3160310504. |
[11] |
R. B. Melrose and J. Sjöstrand,
Singularities of boundary value problems. II, Comm. Pure Appl. Math., 35 (1982), 129-168.
doi: 10.1002/cpa.3160350202. |
[12] |
R. B. Melrose and M. E. Taylor, Boundary Problems for Wave Equations With Grazing and Gliding Rays, Available at https://www.unc.edu/math/Faculty/met/wavep.html. |
[13] |
R. B. Melrose and M. E. Taylor,
The radiation pattern of a diffracted wave near the shadow boundary, Comm. Partial Differential Equations, 11 (1986), 599-672.
doi: 10.1080/03605308608820439. |
[14] |
O. Vallée and M. Soares, Airy Functions and Applications to Physics, Imperial College Press, London; Distributed by World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2004.
doi: 10.1142/p345. |
[1] |
Larissa V. Fardigola. Transformation operators in controllability problems for the wave equations with variable coefficients on a half-axis controlled by the Dirichlet boundary condition. Mathematical Control and Related Fields, 2015, 5 (1) : 31-53. doi: 10.3934/mcrf.2015.5.31 |
[2] |
P. D'Ancona. On large potential perturbations of the Schrödinger, wave and Klein–Gordon equations. Communications on Pure and Applied Analysis, 2020, 19 (1) : 609-640. doi: 10.3934/cpaa.2020029 |
[3] |
Soichiro Katayama. Global existence for systems of nonlinear wave and klein-gordon equations with compactly supported initial data. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1479-1497. doi: 10.3934/cpaa.2018071 |
[4] |
Hayato Miyazaki. Strong blow-up instability for standing wave solutions to the system of the quadratic nonlinear Klein-Gordon equations. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2411-2445. doi: 10.3934/dcds.2020370 |
[5] |
Pierre-Damien Thizy. Klein-Gordon-Maxwell equations in high dimensions. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1097-1125. doi: 10.3934/cpaa.2015.14.1097 |
[6] |
Percy D. Makita. Nonradial solutions for the Klein-Gordon-Maxwell equations. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2271-2283. doi: 10.3934/dcds.2012.32.2271 |
[7] |
Jungkwon Kim, Hyeongjin Lee, Ihyeok Seo, Jihyeon Seok. On Morawetz estimates with time-dependent weights for the Klein-Gordon equation. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6275-6288. doi: 10.3934/dcds.2020279 |
[8] |
Sergei Avdonin, Jeff Park, Luz de Teresa. The Kalman condition for the boundary controllability of coupled 1-d wave equations. Evolution Equations and Control Theory, 2020, 9 (1) : 255-273. doi: 10.3934/eect.2020005 |
[9] |
Lan Zeng, Guoxi Ni, Yingying Li. Low Mach number limit of strong solutions for 3-D full compressible MHD equations with Dirichlet boundary condition. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5503-5522. doi: 10.3934/dcdsb.2019068 |
[10] |
Nakao Hayashi, Seishirou Kobayashi, Pavel I. Naumkin. Nonlinear dispersive wave equations in two space dimensions. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1377-1393. doi: 10.3934/cpaa.2015.14.1377 |
[11] |
Masahito Ohta, Grozdena Todorova. Strong instability of standing waves for nonlinear Klein-Gordon equations. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 315-322. doi: 10.3934/dcds.2005.12.315 |
[12] |
Marco Ghimenti, Stefan Le Coz, Marco Squassina. On the stability of standing waves of Klein-Gordon equations in a semiclassical regime. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2389-2401. doi: 10.3934/dcds.2013.33.2389 |
[13] |
Michinori Ishiwata, Makoto Nakamura, Hidemitsu Wadade. Remarks on the Cauchy problem of Klein-Gordon equations with weighted nonlinear terms. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 4889-4903. doi: 10.3934/dcds.2015.35.4889 |
[14] |
Takeshi Taniguchi. Exponential boundary stabilization for nonlinear wave equations with localized damping and nonlinear boundary condition. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1571-1585. doi: 10.3934/cpaa.2017075 |
[15] |
Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230 |
[16] |
Zhenghuan Gao, Peihe Wang. Global $ C^2 $-estimates for smooth solutions to uniformly parabolic equations with Neumann boundary condition. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1201-1223. doi: 10.3934/dcds.2021152 |
[17] |
Hyeongjin Lee, Ihyeok Seo, Jihyeon Seok. Local smoothing and Strichartz estimates for the Klein-Gordon equation with the inverse-square potential. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 597-608. doi: 10.3934/dcds.2020024 |
[18] |
Weizhu Bao, Chunmei Su. Uniform error estimates of a finite difference method for the Klein-Gordon-Schrödinger system in the nonrelativistic and massless limit regimes. Kinetic and Related Models, 2018, 11 (4) : 1037-1062. doi: 10.3934/krm.2018040 |
[19] |
Jeremy L. Marzuola. Dispersive estimates using scattering theory for matrix Hamiltonian equations. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 995-1035. doi: 10.3934/dcds.2011.30.995 |
[20] |
Dorina Mitrea, Marius Mitrea, Sylvie Monniaux. The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains. Communications on Pure and Applied Analysis, 2008, 7 (6) : 1295-1333. doi: 10.3934/cpaa.2008.7.1295 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]