In [
Citation: |
[1] |
K. Adl-Zarabi, Absolutely continuous invariant measures for piecewise expanding $C^{2}$ transformations in $ \mathbb{R} ^{N}$ on domains with cusps on the boundaries, Ergodic Theory and Dynamical Systems, 16 (1996), 1-18.
doi: 10.1017/S0143385700008683.![]() ![]() ![]() |
[2] |
L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variations and Free Discontinuity Problems, Courier Corporation, 2000.
![]() ![]() |
[3] |
V. Araujo and J. Solano, Absolutely continuous invariant measures for random non-uniformly expanding maps, Mathematische Zeitschrift, 3-4 (2014), 1199-1235.
doi: 10.1007/s00209-014-1300-z.![]() ![]() ![]() |
[4] |
L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, Springer-Verlag, 1998.
doi: 10.1007/978-3-662-12878-7.![]() ![]() ![]() |
[5] |
C. Bose, On the existence and approximation of invariant densities for nonsingular transformations on $ \mathbb{R} ^{d}$, Journal of Approximation Theory, 79 (1994), 260-270.
doi: 10.1006/jath.1994.1128.![]() ![]() ![]() |
[6] |
A. Boyarsky and Y. Lou, Existence of absolutely continuous invariant measures for higher-dimensional random maps, Dynamics and Stability of Systems, 7 (1992), 233-244.
doi: 10.1080/02681119208806141.![]() ![]() ![]() |
[7] |
A. Boyarsky and Y. Lou, Approximating measures invariant under higher-dimensional chaotic transformations, Journal of Approximation Theory, 65 (1991), 231-244.
doi: 10.1016/0021-9045(91)90105-J.![]() ![]() ![]() |
[8] |
A. Boyarsky, P. Góra and Y. S. Lou, Constructive approximations to the invariant densities of higher-dimensional transformations, Constructive Approximation, 10 (1994), 1-13.
doi: 10.1007/BF01205163.![]() ![]() ![]() |
[9] |
J. Buzzi, Absolutely continuous SRB measures for random Lasota-Yorke maps, Transactions of the American Mathematical Society, 352 (2000), 3289-3303.
doi: 10.1090/S0002-9947-00-02607-6.![]() ![]() ![]() |
[10] |
J. Buzzi, No or infinitely many ACIP for piecewise expanding $C^{r}$ maps in higher dimensions, Communications in Mathematical Physics, 3 (2001), 495-501.
doi: 10.1007/s002200100509.![]() ![]() ![]() |
[11] |
W. J. Cowieson, Stochastic stability for piecewise expanding maps in $ \mathbb{R} ^{d}$, Nonlinearity, 13 (2000), 1745-1760.
doi: 10.1088/0951-7715/13/5/316.![]() ![]() ![]() |
[12] |
G. Froyland, S. Lloyd and A. Quas, A semi-invertible Oseledets theorem with applications to transfer operators cocycles, Discrete and Continuous Dynamical Systems, 33 (2013), 3835-3860.
doi: 10.3934/dcds.2013.33.3835.![]() ![]() ![]() |
[13] |
I. Ghenciu, Weakly precompact subsets of $L^{1}(\mu, X)$, Colloquium Mathematicum, 129 (2012), 133-143.
doi: 10.4064/cm129-1-10.![]() ![]() ![]() |
[14] |
E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, 1984.
doi: 10.1007/978-1-4684-9486-0.![]() ![]() ![]() |
[15] |
C. González-Tokman and A. Quas, A semi-invertible operator Oseledets theorem, Ergodic Theory and Dynamical Systems, 34 (2014), 1230-1272.
doi: 10.1017/etds.2012.189.![]() ![]() ![]() |
[16] |
C. González-Tokman and A. Quas, Stability and collapse of the Lyapunov spectrum for Perron-Frobenius operator cocycles, Journal of the European Mathematical Society, (to appear), arXiv: 1806.08873.
![]() |
[17] |
P. Góra and A. Boyarsky, Absolutely continuous invariant measures for piecewise expanding $C^{2}$ transformations in $ \mathbb{R} ^{N}$, Israel Journal of Mathematics, 67 (1989), 272-286.
doi: 10.1007/BF02764946.![]() ![]() ![]() |
[18] |
P. Góra and A. Boyarsky, Higher-dimensional point transformations and asymptotic measures for cellular automata, Computers and Mathematics with Applications, 19 (1990), 13-31.
doi: 10.1016/0898-1221(90)90247-H.![]() ![]() ![]() |
[19] |
P. Góra, A. Boyarsky and H. Proppe, On the number of invariant measures for higher-dimensional chaotic transformations, Journal of Statistical Physics, 62 (1991), 709-728.
doi: 10.1007/BF01017979.![]() ![]() ![]() |
[20] |
L. Hsieh, Ergodic Theory of Multidimensional Random Dynamical Systems, Master thesis, University of Victoria, 2008.
![]() |
[21] |
C. T. Ionescu Tulcea and G. Marinescu, Théorie ergodique pour des classes d'opérations non complètement continues, Annals of Mathematics, (1950), 140–147.
doi: 10.2307/1969514.![]() ![]() ![]() |
[22] |
M. Jabłoński, On invariant measures for piecewise $C^{2}$-transformations of the $n$- dimensional cube, Annales Polonici Mathematici, 2 (1983), 185-195.
doi: 10.4064/ap-43-2-185-195.![]() ![]() ![]() |
[23] |
G. Keller, Exponents, attractors and Hopf decompositions for interval maps, Ergodic Theory and Dynamical Systems, 10 (1990), 717-744.
doi: 10.1017/S0143385700005861.![]() ![]() ![]() |
[24] |
G. Keller, Propriétés Ergordiques Des Endomorphismes Dilatants, $C^{2}$ Par Morceaux, Des Régions Bornées Du Plan, Thèse, Université de Rennes, 1979.
![]() |
[25] |
A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Transactions of the American Mathematical Society, (1973), 481–488.
doi: 10.1090/S0002-9947-1973-0335758-1.![]() ![]() ![]() |
[26] |
C. Liverani, Multidimensional expanding maps with singularities: A pedestrian approach, Ergodic Theory and Dynamical Systems, 33 (2013), 168-182.
doi: 10.1017/S0143385711000939.![]() ![]() ![]() |
[27] |
T. Morita, Random iteration of one-dimensional transformations, Osaka Journal of Mathematics, 22 (1985), 489-518.
![]() ![]() |
[28] |
F. Nakamura and H. Toyokawa, Random invariant densities for Markov operator cocycles and random mean ergodic theorem, preprint, arXiv: 2101.04878.
![]() |
[29] |
V. I. Oseledets, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskovskogo Matematicheskogo Obshchestva, 19 (1968), 179-210.
![]() ![]() |
[30] |
S. Pelikan, Invariant densities for random maps of the interval, Transactions of the American Mathematical Society, 281 (1984), 813-825.
doi: 10.1090/S0002-9947-1984-0722776-1.![]() ![]() ![]() |
[31] |
B. Saussol, Absolutely continuous invariant measures for multidimensional expanding maps, Israel Journal of Mathematics, 116 (2000), 223-248.
doi: 10.1007/BF02773219.![]() ![]() ![]() |
[32] |
P. Thieullen, Fibrés dynamiques asymptotiquement compacts. Exposants de Lyapounov. Entropie. Dimension, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4 (1987) 49–97.
doi: 10.1016/S0294-1449(16)30373-0.![]() ![]() ![]() |
[33] |
D. Thomine, A spectral gap for transfer operators of piecewise expanding maps, Discrete and Continuous Dynamical Systems, 30 (2011), 917-944.
doi: 10.3934/dcds.2011.30.917.![]() ![]() ![]() |
[34] |
S. Ulam and J. von Neumann, Random ergodic theorem, Bulletin of the American Mathematical Society, 51 (1947), 660.
doi: 10.1090/S0002-9904-1958-10189-5.![]() ![]() ![]() |
Bounds in (45) (solid) and (46) (dashed)