-
Previous Article
Bifurcations in asymptotically autonomous Hamiltonian systems under oscillatory perturbations
- DCDS Home
- This Issue
-
Next Article
On the number of invariant measures for random expanding maps in higher dimensions
Maximal chain continuous factor
Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan |
For any continuous self-map of a compact metric space, we define, prove the existence, and give an explicit expression of a maximal chain continuous factor. For the purpose, we exploit a chain proximal relation and its extension. An example is given to illustrate a difference of the two relations. An alternative proof of a result on the odometers and the regular recurrence is given. Also, we provide an example of a calculation of the maximal chain continuous factor for generic homeomorphism of the Cantor set.
References:
[1] |
E. Akin, The General Topology of Dynamical Systems. Graduate Studies in Mathematics, 1. American Mathematical Society, Providence, RI, 1993.
doi: 10.1090/gsm/001. |
[2] |
E. Akin,
On chain continuity, Discrete Contin. Dynam. Systems, 2 (1996), 111-120.
doi: 10.3934/dcds.1996.2.111. |
[3] |
E. Akin and E. Glasner,
Residual properties and almost equicontinuity, J. Anal. Math., 84 (2001), 243-286.
doi: 10.1007/BF02788112. |
[4] |
E. Akin, E. Glasner and B. Weiss,
Generically there is but one self homeomorphism of the Cantor set, Trans. Amer. Math. Soc., 360 (2008), 3613-3630.
doi: 10.1090/S0002-9947-08-04450-4. |
[5] |
E. Akin and J. Wiseman,
Varieties of mixing, Trans. Amer. Math. Soc., 372 (2019), 4359-4390.
doi: 10.1090/tran/7681. |
[6] |
N. Aoki and K. Hiraide, Topological Theory of Dynamical Systems. Recent Advances, North-Holland Mathematical Library, 52. North-Holland Publishing Co., Amsterdam, 1994. |
[7] |
J. Auslander, Minimal Flows and their Extensions, North-Holland Mathematics Studies, 153. North-Holland Publishing Co., Amsterdam, 1988. |
[8] |
J. Auslander,
Two folk theorems in topological dynamics, Eur. J. Math., 2 (2016), 539-543.
doi: 10.1007/s40879-016-0097-1. |
[9] |
N. C. Bernardes Jr. and U. B. Darji,
Graph theoretic structure of maps of the Cantor space, Adv. Math., 231 (2012), 1655-1680.
doi: 10.1016/j.aim.2012.05.024. |
[10] |
L. Blokh and J. Keesling,
A characterization of adding machine maps, Topology Appl., 140 (2004), 151-161.
doi: 10.1016/j.topol.2003.07.006. |
[11] |
J. Buescu, M. Kulczycki and I. Stewart,
Liapunov stability and adding machines revisited, Dyn. Syst., 21 (2006), 379-384.
doi: 10.1080/14689360600649815. |
[12] |
J. Buescu and I. Stewart,
Liapunov stability and adding machines, Ergodic Theory Dynam. Systems, 15 (1995), 271-290.
doi: 10.1017/S0143385700008373. |
[13] |
T. Downarowicz, Survey of odometers and Toeplitz flows, Algebraic and Topological Dynamics, 7–37, Contemp. Math., 385, Amer. Math. Soc., Providence, RI, 2005.
doi: 10.1090/conm/385/07188. |
[14] |
M. W. Hirsch and M. Hurley,
Connected components of attractors and other stable sets, Aequationes Math., 53 (1997), 308-323.
doi: 10.1007/BF02215978. |
[15] |
M. Hochman,
Genericity in topological dynamics, Ergodic Theory Dynam. Systems, 28 (2008), 125-165.
doi: 10.1017/S0143385707000521. |
[16] |
W. Huang and X. Ye,
Devaney's chaos or 2-scattering implies Li-Yorke's chaos, Topology Appl., 117 (2002), 259-272.
doi: 10.1016/S0166-8641(01)00025-6. |
[17] |
N. Kawaguchi,
Quantitative shadowable points, Dyn. Syst., 32 (2017), 504-518.
doi: 10.1080/14689367.2017.1280664. |
[18] |
N. Kawaguchi,
Properties of shadowable points: chaos and equicontinuity, Bull. Braz. Math. Soc. (N.S.), 48 (2017), 599-622.
doi: 10.1007/s00574-017-0033-0. |
[19] |
N. Kawaguchi,
Distributionally chaotic maps are $C^0$-dense, Proc. Amer. Math. Soc., 147 (2019), 5339-5348.
doi: 10.1090/proc/14696. |
[20] |
A.S. Kechris and C. Rosendal,
Turbulence, amalgamation, and generic automorphisms of homogeneous structures, Proc. Lond. Math. Soc., 94 (2007), 302-350.
doi: 10.1112/plms/pdl007. |
[21] |
J. Kupka and P. Oprocha,
On the dynamics of generic maps on the Cantor set, Topology Appl., 263 (2019), 330-342.
doi: 10.1016/j.topol.2019.05.029. |
[22] |
P. Kůrka, Topological and Symbolic Dynamics, Societe Mathematique de France, Paris, 2003. |
[23] |
J. H. Mai,
The structure of equicontinuous maps, Trans. Amer. Math. Soc., 355 (2003), 4125-4136.
doi: 10.1090/S0002-9947-03-03339-7. |
[24] |
D. Richeson and J. Wiseman,
Chain recurrence rates and topological entropy, Topology Appl., 156 (2008), 251-261.
doi: 10.1016/j.topol.2008.07.005. |
show all references
References:
[1] |
E. Akin, The General Topology of Dynamical Systems. Graduate Studies in Mathematics, 1. American Mathematical Society, Providence, RI, 1993.
doi: 10.1090/gsm/001. |
[2] |
E. Akin,
On chain continuity, Discrete Contin. Dynam. Systems, 2 (1996), 111-120.
doi: 10.3934/dcds.1996.2.111. |
[3] |
E. Akin and E. Glasner,
Residual properties and almost equicontinuity, J. Anal. Math., 84 (2001), 243-286.
doi: 10.1007/BF02788112. |
[4] |
E. Akin, E. Glasner and B. Weiss,
Generically there is but one self homeomorphism of the Cantor set, Trans. Amer. Math. Soc., 360 (2008), 3613-3630.
doi: 10.1090/S0002-9947-08-04450-4. |
[5] |
E. Akin and J. Wiseman,
Varieties of mixing, Trans. Amer. Math. Soc., 372 (2019), 4359-4390.
doi: 10.1090/tran/7681. |
[6] |
N. Aoki and K. Hiraide, Topological Theory of Dynamical Systems. Recent Advances, North-Holland Mathematical Library, 52. North-Holland Publishing Co., Amsterdam, 1994. |
[7] |
J. Auslander, Minimal Flows and their Extensions, North-Holland Mathematics Studies, 153. North-Holland Publishing Co., Amsterdam, 1988. |
[8] |
J. Auslander,
Two folk theorems in topological dynamics, Eur. J. Math., 2 (2016), 539-543.
doi: 10.1007/s40879-016-0097-1. |
[9] |
N. C. Bernardes Jr. and U. B. Darji,
Graph theoretic structure of maps of the Cantor space, Adv. Math., 231 (2012), 1655-1680.
doi: 10.1016/j.aim.2012.05.024. |
[10] |
L. Blokh and J. Keesling,
A characterization of adding machine maps, Topology Appl., 140 (2004), 151-161.
doi: 10.1016/j.topol.2003.07.006. |
[11] |
J. Buescu, M. Kulczycki and I. Stewart,
Liapunov stability and adding machines revisited, Dyn. Syst., 21 (2006), 379-384.
doi: 10.1080/14689360600649815. |
[12] |
J. Buescu and I. Stewart,
Liapunov stability and adding machines, Ergodic Theory Dynam. Systems, 15 (1995), 271-290.
doi: 10.1017/S0143385700008373. |
[13] |
T. Downarowicz, Survey of odometers and Toeplitz flows, Algebraic and Topological Dynamics, 7–37, Contemp. Math., 385, Amer. Math. Soc., Providence, RI, 2005.
doi: 10.1090/conm/385/07188. |
[14] |
M. W. Hirsch and M. Hurley,
Connected components of attractors and other stable sets, Aequationes Math., 53 (1997), 308-323.
doi: 10.1007/BF02215978. |
[15] |
M. Hochman,
Genericity in topological dynamics, Ergodic Theory Dynam. Systems, 28 (2008), 125-165.
doi: 10.1017/S0143385707000521. |
[16] |
W. Huang and X. Ye,
Devaney's chaos or 2-scattering implies Li-Yorke's chaos, Topology Appl., 117 (2002), 259-272.
doi: 10.1016/S0166-8641(01)00025-6. |
[17] |
N. Kawaguchi,
Quantitative shadowable points, Dyn. Syst., 32 (2017), 504-518.
doi: 10.1080/14689367.2017.1280664. |
[18] |
N. Kawaguchi,
Properties of shadowable points: chaos and equicontinuity, Bull. Braz. Math. Soc. (N.S.), 48 (2017), 599-622.
doi: 10.1007/s00574-017-0033-0. |
[19] |
N. Kawaguchi,
Distributionally chaotic maps are $C^0$-dense, Proc. Amer. Math. Soc., 147 (2019), 5339-5348.
doi: 10.1090/proc/14696. |
[20] |
A.S. Kechris and C. Rosendal,
Turbulence, amalgamation, and generic automorphisms of homogeneous structures, Proc. Lond. Math. Soc., 94 (2007), 302-350.
doi: 10.1112/plms/pdl007. |
[21] |
J. Kupka and P. Oprocha,
On the dynamics of generic maps on the Cantor set, Topology Appl., 263 (2019), 330-342.
doi: 10.1016/j.topol.2019.05.029. |
[22] |
P. Kůrka, Topological and Symbolic Dynamics, Societe Mathematique de France, Paris, 2003. |
[23] |
J. H. Mai,
The structure of equicontinuous maps, Trans. Amer. Math. Soc., 355 (2003), 4125-4136.
doi: 10.1090/S0002-9947-03-03339-7. |
[24] |
D. Richeson and J. Wiseman,
Chain recurrence rates and topological entropy, Topology Appl., 156 (2008), 251-261.
doi: 10.1016/j.topol.2008.07.005. |
[1] |
Gerhard Keller. Maximal equicontinuous generic factors and weak model sets. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6855-6875. doi: 10.3934/dcds.2020132 |
[2] |
Ronald A. Knight. Compact minimal sets in continuous recurrent flows. Conference Publications, 1998, 1998 (Special) : 397-407. doi: 10.3934/proc.1998.1998.397 |
[3] |
Jeremy LeCrone, Gieri Simonett. Continuous maximal regularity and analytic semigroups. Conference Publications, 2011, 2011 (Special) : 963-970. doi: 10.3934/proc.2011.2011.963 |
[4] |
Eduardo Garibaldi, Irene Inoquio-Renteria. Dynamical obstruction to the existence of continuous sub-actions for interval maps with regularly varying property. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2315-2333. doi: 10.3934/dcds.2020115 |
[5] |
Jeremy LeCrone, Gieri Simonett. On quasilinear parabolic equations and continuous maximal regularity. Evolution Equations and Control Theory, 2020, 9 (1) : 61-86. doi: 10.3934/eect.2020017 |
[6] |
Yuanzhen Shao. Continuous maximal regularity on singular manifolds and its applications. Evolution Equations and Control Theory, 2016, 5 (2) : 303-335. doi: 10.3934/eect.2016006 |
[7] |
Hiromichi Nakayama, Takeo Noda. Minimal sets and chain recurrent sets of projective flows induced from minimal flows on $3$-manifolds. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 629-638. doi: 10.3934/dcds.2005.12.629 |
[8] |
Suzanne Lynch Hruska. Rigorous numerical models for the dynamics of complex Hénon mappings on their chain recurrent sets. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 529-558. doi: 10.3934/dcds.2006.15.529 |
[9] |
Zhigang Zeng, Tingwen Huang. New passivity analysis of continuous-time recurrent neural networks with multiple discrete delays. Journal of Industrial and Management Optimization, 2011, 7 (2) : 283-289. doi: 10.3934/jimo.2011.7.283 |
[10] |
Alexander Vladimirov. Equicontinuous sweeping processes. Discrete and Continuous Dynamical Systems - B, 2013, 18 (2) : 565-573. doi: 10.3934/dcdsb.2013.18.565 |
[11] |
Xiaoming Zheng, Gou Young Koh, Trachette Jackson. A continuous model of angiogenesis: Initiation, extension, and maturation of new blood vessels modulated by vascular endothelial growth factor, angiopoietins, platelet-derived growth factor-B, and pericytes. Discrete and Continuous Dynamical Systems - B, 2013, 18 (4) : 1109-1154. doi: 10.3934/dcdsb.2013.18.1109 |
[12] |
Eriko Hironaka, Sarah Koch. A disconnected deformation space of rational maps. Journal of Modern Dynamics, 2017, 11: 409-423. doi: 10.3934/jmd.2017016 |
[13] |
Nathaniel D. Emerson. Dynamics of polynomials with disconnected Julia sets. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 801-834. doi: 10.3934/dcds.2003.9.801 |
[14] |
Jie Li. How chaotic is an almost mean equicontinuous system?. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4727-4744. doi: 10.3934/dcds.2018208 |
[15] |
Misha Bialy. On Totally integrable magnetic billiards on constant curvature surface. Electronic Research Announcements, 2012, 19: 112-119. doi: 10.3934/era.2012.19.112 |
[16] |
Vladimír Špitalský. Entropy and exact Devaney chaos on totally regular continua. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 3135-3152. doi: 10.3934/dcds.2013.33.3135 |
[17] |
Vladimir V. Chepyzhov, Monica Conti, Vittorino Pata. Totally dissipative dynamical processes and their uniform global attractors. Communications on Pure and Applied Analysis, 2014, 13 (5) : 1989-2004. doi: 10.3934/cpaa.2014.13.1989 |
[18] |
Jean-Michel Rakotoson. Generalized eigenvalue problem for totally discontinuous operators. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 343-373. doi: 10.3934/dcds.2010.28.343 |
[19] |
Juan Campos, Rafael Obaya, Massimo Tarallo. Recurrent equations with sign and Fredholm alternative. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 959-977. doi: 10.3934/dcdss.2016036 |
[20] |
Lyudmila Grigoryeva, Juan-Pablo Ortega. Dimension reduction in recurrent networks by canonicalization. Journal of Geometric Mechanics, 2021, 13 (4) : 647-677. doi: 10.3934/jgm.2021028 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]