January  2022, 42(1): 109-135. doi: 10.3934/dcds.2021109

Global existence of solutions to reaction diffusion systems with mass transport type boundary conditions on an evolving domain

1. 

Department of Mathematics, Indian Institute of Technology Jodhpur, Rajasthan, India

2. 

Department of Mathematics, University of Mumbai, Vidyanagari, Mumbai 400 098, India

* Corresponding author: Jyotshana V. Prajapat

Received  December 2020 Revised  February 2021 Published  January 2022 Early access  October 2021

Fund Project: The first author's research was supported by SEED grant of IIT Jodhpur

We consider reaction diffusion systems where components diffuse inside the domain and react on the surface through mass transport type boundary conditions on an evolving domain. Using a Lyapunov functional and duality arguments, we establish the existence of component wise non-negative global solutions.

Citation: Vandana Sharma, Jyotshana V. Prajapat. Global existence of solutions to reaction diffusion systems with mass transport type boundary conditions on an evolving domain. Discrete & Continuous Dynamical Systems, 2022, 42 (1) : 109-135. doi: 10.3934/dcds.2021109
References:
[1]

S. Abdelmalek and S. Kouachi, Proof of existence of global solutions for m-component reaction-diffusion systems with mixed boundary conditions via the Lyapunov functional method, J. Phys. A, 40 (2007), 12335-12350.  doi: 10.1088/1751-8113/40/41/005.  Google Scholar

[2]

I. BarrassE. J. Crampin and P. K. Mainia, Mode transitions in a model reaction-diffusion system driven by domain growth and noise, Bull. Math. Biol., 68 (2006), 981-995.  doi: 10.1007/s11538-006-9106-8.  Google Scholar

[3]

E. J. CrampinE. A. Gaffney and P. K. Maini, Reaction and diffusion on growing domains: Scenarios for robust pattern formation, Bull. Math. Biol., 61 (1999), 1093-1120.  doi: 10.1006/bulm.1999.0131.  Google Scholar

[4]

E. J. CrampinE. A. Gaffney and P. K. Maini, Mode-doubling and tripling in reaction-diffusion patterns on growing domains: A piecewise linear model, J. Math. Biol., 44 (2002), 107-128.  doi: 10.1007/s002850100112.  Google Scholar

[5]

A. Comanici and M. Golubitsky, Patterns on growing square domains via mode interactions, Dyn. Syst., 23 (2008), 167-206.  doi: 10.1080/14689360801945327.  Google Scholar

[6]

J. Ding and S. Li, Blow-up and global solutions for nonlinear reaction–diffusion equations with Neumann boundary conditions, Nonlinear Anal., 68 (2008), 507-514.  doi: 10.1016/j.na.2006.11.016.  Google Scholar

[7]

R. Douaifia, S. Abdelmalek and S. Bendoukha, Global existence and asymptotic stablity for a class of coupled reaction-diffusion systems on growing domains, Acta Appl. Math, 171 (2021), 13 pp. doi: 10.1007/s10440-021-00385-7.  Google Scholar

[8]

E. B. Fabes and N. M. Riviere, Dirichlet and Neumann problems for the heat equation in $C^1$ cylinders, in Harmonic Analysis in Euclidean Spaces Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978.  Google Scholar

[9]

K. FellnerJ. Morgan and B. Q. Tang, Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions, Discrete Contin. Dyn. Syst. Ser. S, 14 (2021), 635-651.  doi: 10.3934/dcdss.2020334.  Google Scholar

[10]

K. FellnerJ. Morgan and B. Q. Tang, Global classical solutions to quadratic systems with mass control in arbitrary dimensions, Ann. Inst. H. Poincaré Anal. Non Linéaire, 37 (2020), 281-307.  doi: 10.1016/j.anihpc.2019.09.003.  Google Scholar

[11]

A. HahnK. Held and L. Tobiska, Modelling of surfactant concentration in a coupled bulk surface problem, PAMM Proc. Appl. Math. Mech, 14 (2014), 525-526.  doi: 10.1002/pamm.201410250.  Google Scholar

[12]

S. L. HollisR. H. MartinJr . and M. Pierre, Global existence and boundedness in reaction-diffusion systems, SIAM J. Math. Anal., 18 (1987), 744-761.  doi: 10.1137/0518057.  Google Scholar

[13]

S. Kondo and R. Asai, A reaction–diffusion wave on the skin of the marine angelfish Pomacanthus, Nature, 376 (1995), 765-768.  doi: 10.1038/376765a0.  Google Scholar

[14]

A. L. KrauseM. A. Ellis and R. A. Van Gorder, Influence of curvature, growth, and anisotropy on the evolution of turing patterns on growing manifolds, Bull. Math. Biol., 81 (2019), 759-799.  doi: 10.1007/s11538-018-0535-y.  Google Scholar

[15]

P. M. KulesaG. C. CruywagenS. R. LubkinP. K. MainiJ. SneydM. W. J. Ferguson and J. D. Murray, On a model mechanism for the spatial pattering of teeth primordia in the alligator, J. Theoret. Biol., 180 (1996), 287-296.   Google Scholar

[16]

M. Labadie, The stabilizing effect of growth on pattern formation, Preprint, (2008). Google Scholar

[17] O.-A. Ladyzhenskaia and N.-N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis Academic Press, New York-London, 1968.   Google Scholar
[18]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, (Russian) Translated from the Russian by S. Smith Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1968.  Google Scholar

[19]

A. Madzvamuse, Time-stepping schemes for moving grid finite elements applied to reaction–diffusion systems on fixed and growing domains, J. Comput. Phys., 214 (2006), 239-263.  doi: 10.1016/j.jcp.2005.09.012.  Google Scholar

[20]

A. Madzvamuse and A. H. Chung, Analysis and simulations of coupled bulk-surface reaction-diffusion systems on exponentially evolving volumes, Math. Model. Nat. Phenom., 11 (2016), 4-32.  doi: 10.1051/mmnp/201611502.  Google Scholar

[21]

A. MadzvamuseE. A. Gaffney and P. K. Maini, Stability analysis of non-autonomous reaction-diffusion systems: The effects of growing domains, J. Math. Biol, 61 (2010), 133-164.  doi: 10.1007/s00285-009-0293-4.  Google Scholar

[22]

A. Madzvamuse and P. K. Maini, Velocity-induced numerical solutions of reaction-diffusion systems on continuously growing domains, J. Comput. Phys., 225 (2007), 100-119.  doi: 10.1016/j.jcp.2006.11.022.  Google Scholar

[23]

J. Morgan, Global existence for semilinear parabolic systems, SIAM J. Math. Anal, 20 (1989), 1128-1144.  doi: 10.1137/0520075.  Google Scholar

[24]

J. Morgan and V. Sharma, Global existence of solutions to volume-surface reaction diffusion systems with dynamic boundary conditions, Differential Integral Equations, 33 (2020), 113-139.   Google Scholar

[25]

R. G. PlazaF. Sànchez-GarduñoP. PadillaR. A. Barrio and P. K. Maini, The effect of growth and curvature on pattern formation, J. Dynam. Differential Equations, 16 (2004), 1093-1121.  doi: 10.1007/s10884-004-7834-8.  Google Scholar

[26]

M. Pierre and D. Schmitt, Blowup in reaction-diffusion systems with dissipation of mass, SIAM Rev., 42 (2000), 93-106.  doi: 10.1137/S0036144599359735.  Google Scholar

[27]

M. Pierre, Global existence in reaction-diffusion systems with control of mass: A survey, Milan J. Math., 78 (2010), 417-455.  doi: 10.1007/s00032-010-0133-4.  Google Scholar

[28]

A. Rätz and M. Röger, Turing instabilities in a mathematical model for signaling networks, J. Math. Biol., 65 (2012), 1215-1244.  doi: 10.1007/s00285-011-0495-4.  Google Scholar

[29]

A. Rätz and M. Röger, Symmetry breaking in a bulk-surface reaction-diffusion model for signaling networks, Nonlinearity, 27 (2014), 1805-1827.   Google Scholar

[30]

F. Rothe, Global Solutions of Reaction-Diffusion Systems, Lecture Notes in Mathematics, Vol. 1072, Springer-Verlag, Berlin, 1984. doi: 10.1007/BFb0099278.  Google Scholar

[31]

V. Sharma, Global existence and uniform estimates for solutions to reaction-diffusion systems with mass transport type of boundary conditions, Comunication on Pure and Applied Analysis, (2020) Google Scholar

[32]

V. Sharma and J. Morgan, Global existence of solutions to coupled reaction-diffusion systems with mass transport type of boundary conditions, SIAM J. Math. Anal., 48 (2016), 4202-4240.  doi: 10.1137/15M1015145.  Google Scholar

[33]

V. Sharma and J. Morgan, Uniform bounds for solutions to volume-surface reaction diffusion systems, Differential Integral Equations, 30 (2017), 423-442.   Google Scholar

[34]

V. Sharma and J. V. Prajapat, Global existence of solution to volume surface reaction diffusion system with evolving domain, work-in-progress. Google Scholar

[35]

A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 237 (1952), 37-72.  doi: 10.1098/rstb.1952.0012.  Google Scholar

[36]

C. VenkataramanO. Lakkis and A. Madzvamuse, Global existence for semilinear reaction–diffusion systems on evolving domains, Journal of Mathematical Biology, 64 (2012), 41-67.  doi: 10.1007/s00285-011-0404-x.  Google Scholar

show all references

References:
[1]

S. Abdelmalek and S. Kouachi, Proof of existence of global solutions for m-component reaction-diffusion systems with mixed boundary conditions via the Lyapunov functional method, J. Phys. A, 40 (2007), 12335-12350.  doi: 10.1088/1751-8113/40/41/005.  Google Scholar

[2]

I. BarrassE. J. Crampin and P. K. Mainia, Mode transitions in a model reaction-diffusion system driven by domain growth and noise, Bull. Math. Biol., 68 (2006), 981-995.  doi: 10.1007/s11538-006-9106-8.  Google Scholar

[3]

E. J. CrampinE. A. Gaffney and P. K. Maini, Reaction and diffusion on growing domains: Scenarios for robust pattern formation, Bull. Math. Biol., 61 (1999), 1093-1120.  doi: 10.1006/bulm.1999.0131.  Google Scholar

[4]

E. J. CrampinE. A. Gaffney and P. K. Maini, Mode-doubling and tripling in reaction-diffusion patterns on growing domains: A piecewise linear model, J. Math. Biol., 44 (2002), 107-128.  doi: 10.1007/s002850100112.  Google Scholar

[5]

A. Comanici and M. Golubitsky, Patterns on growing square domains via mode interactions, Dyn. Syst., 23 (2008), 167-206.  doi: 10.1080/14689360801945327.  Google Scholar

[6]

J. Ding and S. Li, Blow-up and global solutions for nonlinear reaction–diffusion equations with Neumann boundary conditions, Nonlinear Anal., 68 (2008), 507-514.  doi: 10.1016/j.na.2006.11.016.  Google Scholar

[7]

R. Douaifia, S. Abdelmalek and S. Bendoukha, Global existence and asymptotic stablity for a class of coupled reaction-diffusion systems on growing domains, Acta Appl. Math, 171 (2021), 13 pp. doi: 10.1007/s10440-021-00385-7.  Google Scholar

[8]

E. B. Fabes and N. M. Riviere, Dirichlet and Neumann problems for the heat equation in $C^1$ cylinders, in Harmonic Analysis in Euclidean Spaces Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978.  Google Scholar

[9]

K. FellnerJ. Morgan and B. Q. Tang, Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions, Discrete Contin. Dyn. Syst. Ser. S, 14 (2021), 635-651.  doi: 10.3934/dcdss.2020334.  Google Scholar

[10]

K. FellnerJ. Morgan and B. Q. Tang, Global classical solutions to quadratic systems with mass control in arbitrary dimensions, Ann. Inst. H. Poincaré Anal. Non Linéaire, 37 (2020), 281-307.  doi: 10.1016/j.anihpc.2019.09.003.  Google Scholar

[11]

A. HahnK. Held and L. Tobiska, Modelling of surfactant concentration in a coupled bulk surface problem, PAMM Proc. Appl. Math. Mech, 14 (2014), 525-526.  doi: 10.1002/pamm.201410250.  Google Scholar

[12]

S. L. HollisR. H. MartinJr . and M. Pierre, Global existence and boundedness in reaction-diffusion systems, SIAM J. Math. Anal., 18 (1987), 744-761.  doi: 10.1137/0518057.  Google Scholar

[13]

S. Kondo and R. Asai, A reaction–diffusion wave on the skin of the marine angelfish Pomacanthus, Nature, 376 (1995), 765-768.  doi: 10.1038/376765a0.  Google Scholar

[14]

A. L. KrauseM. A. Ellis and R. A. Van Gorder, Influence of curvature, growth, and anisotropy on the evolution of turing patterns on growing manifolds, Bull. Math. Biol., 81 (2019), 759-799.  doi: 10.1007/s11538-018-0535-y.  Google Scholar

[15]

P. M. KulesaG. C. CruywagenS. R. LubkinP. K. MainiJ. SneydM. W. J. Ferguson and J. D. Murray, On a model mechanism for the spatial pattering of teeth primordia in the alligator, J. Theoret. Biol., 180 (1996), 287-296.   Google Scholar

[16]

M. Labadie, The stabilizing effect of growth on pattern formation, Preprint, (2008). Google Scholar

[17] O.-A. Ladyzhenskaia and N.-N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis Academic Press, New York-London, 1968.   Google Scholar
[18]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, (Russian) Translated from the Russian by S. Smith Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1968.  Google Scholar

[19]

A. Madzvamuse, Time-stepping schemes for moving grid finite elements applied to reaction–diffusion systems on fixed and growing domains, J. Comput. Phys., 214 (2006), 239-263.  doi: 10.1016/j.jcp.2005.09.012.  Google Scholar

[20]

A. Madzvamuse and A. H. Chung, Analysis and simulations of coupled bulk-surface reaction-diffusion systems on exponentially evolving volumes, Math. Model. Nat. Phenom., 11 (2016), 4-32.  doi: 10.1051/mmnp/201611502.  Google Scholar

[21]

A. MadzvamuseE. A. Gaffney and P. K. Maini, Stability analysis of non-autonomous reaction-diffusion systems: The effects of growing domains, J. Math. Biol, 61 (2010), 133-164.  doi: 10.1007/s00285-009-0293-4.  Google Scholar

[22]

A. Madzvamuse and P. K. Maini, Velocity-induced numerical solutions of reaction-diffusion systems on continuously growing domains, J. Comput. Phys., 225 (2007), 100-119.  doi: 10.1016/j.jcp.2006.11.022.  Google Scholar

[23]

J. Morgan, Global existence for semilinear parabolic systems, SIAM J. Math. Anal, 20 (1989), 1128-1144.  doi: 10.1137/0520075.  Google Scholar

[24]

J. Morgan and V. Sharma, Global existence of solutions to volume-surface reaction diffusion systems with dynamic boundary conditions, Differential Integral Equations, 33 (2020), 113-139.   Google Scholar

[25]

R. G. PlazaF. Sànchez-GarduñoP. PadillaR. A. Barrio and P. K. Maini, The effect of growth and curvature on pattern formation, J. Dynam. Differential Equations, 16 (2004), 1093-1121.  doi: 10.1007/s10884-004-7834-8.  Google Scholar

[26]

M. Pierre and D. Schmitt, Blowup in reaction-diffusion systems with dissipation of mass, SIAM Rev., 42 (2000), 93-106.  doi: 10.1137/S0036144599359735.  Google Scholar

[27]

M. Pierre, Global existence in reaction-diffusion systems with control of mass: A survey, Milan J. Math., 78 (2010), 417-455.  doi: 10.1007/s00032-010-0133-4.  Google Scholar

[28]

A. Rätz and M. Röger, Turing instabilities in a mathematical model for signaling networks, J. Math. Biol., 65 (2012), 1215-1244.  doi: 10.1007/s00285-011-0495-4.  Google Scholar

[29]

A. Rätz and M. Röger, Symmetry breaking in a bulk-surface reaction-diffusion model for signaling networks, Nonlinearity, 27 (2014), 1805-1827.   Google Scholar

[30]

F. Rothe, Global Solutions of Reaction-Diffusion Systems, Lecture Notes in Mathematics, Vol. 1072, Springer-Verlag, Berlin, 1984. doi: 10.1007/BFb0099278.  Google Scholar

[31]

V. Sharma, Global existence and uniform estimates for solutions to reaction-diffusion systems with mass transport type of boundary conditions, Comunication on Pure and Applied Analysis, (2020) Google Scholar

[32]

V. Sharma and J. Morgan, Global existence of solutions to coupled reaction-diffusion systems with mass transport type of boundary conditions, SIAM J. Math. Anal., 48 (2016), 4202-4240.  doi: 10.1137/15M1015145.  Google Scholar

[33]

V. Sharma and J. Morgan, Uniform bounds for solutions to volume-surface reaction diffusion systems, Differential Integral Equations, 30 (2017), 423-442.   Google Scholar

[34]

V. Sharma and J. V. Prajapat, Global existence of solution to volume surface reaction diffusion system with evolving domain, work-in-progress. Google Scholar

[35]

A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 237 (1952), 37-72.  doi: 10.1098/rstb.1952.0012.  Google Scholar

[36]

C. VenkataramanO. Lakkis and A. Madzvamuse, Global existence for semilinear reaction–diffusion systems on evolving domains, Journal of Mathematical Biology, 64 (2012), 41-67.  doi: 10.1007/s00285-011-0404-x.  Google Scholar

[1]

Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049

[2]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001

[3]

Klemens Fellner, Evangelos Latos, Takashi Suzuki. Global classical solutions for mass-conserving, (super)-quadratic reaction-diffusion systems in three and higher space dimensions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3441-3462. doi: 10.3934/dcdsb.2016106

[4]

Perla El Kettani, Danielle Hilhorst, Kai Lee. A stochastic mass conserved reaction-diffusion equation with nonlinear diffusion. Discrete & Continuous Dynamical Systems, 2018, 38 (11) : 5615-5648. doi: 10.3934/dcds.2018246

[5]

Chengxia Lei, Jie Xiong, Xinhui Zhou. Qualitative analysis on an SIS epidemic reaction-diffusion model with mass action infection mechanism and spontaneous infection in a heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 81-98. doi: 10.3934/dcdsb.2019173

[6]

Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334

[7]

Siqing Li, Zhonghua Qiao. A meshless collocation method with a global refinement strategy for reaction-diffusion systems on evolving domains. Discrete & Continuous Dynamical Systems - B, 2022, 27 (1) : 601-617. doi: 10.3934/dcdsb.2021057

[8]

Angelo Favini, Atsushi Yagi. Global existence for Laplace reaction-diffusion equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (5) : 1473-1493. doi: 10.3934/dcdss.2020083

[9]

David Kinderlehrer, Adrian Tudorascu. Transport via mass transportation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 311-338. doi: 10.3934/dcdsb.2006.6.311

[10]

Wei Wang, Anthony Roberts. Macroscopic discrete modelling of stochastic reaction-diffusion equations on a periodic domain. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 253-273. doi: 10.3934/dcds.2011.31.253

[11]

Peter Poláčik, Eiji Yanagida. Stable subharmonic solutions of reaction-diffusion equations on an arbitrary domain. Discrete & Continuous Dynamical Systems, 2002, 8 (1) : 209-218. doi: 10.3934/dcds.2002.8.209

[12]

Yoshihisa Morita, Kunimochi Sakamoto. Turing type instability in a diffusion model with mass transport on the boundary. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3813-3836. doi: 10.3934/dcds.2020160

[13]

Anotida Madzvamuse, Raquel Barreira. Domain-growth-induced patterning for reaction-diffusion systems with linear cross-diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2775-2801. doi: 10.3934/dcdsb.2018163

[14]

Anotida Madzvamuse, Hussaini Ndakwo, Raquel Barreira. Stability analysis of reaction-diffusion models on evolving domains: The effects of cross-diffusion. Discrete & Continuous Dynamical Systems, 2016, 36 (4) : 2133-2170. doi: 10.3934/dcds.2016.36.2133

[15]

Yejuan Wang, Peter E. Kloeden. The uniform attractor of a multi-valued process generated by reaction-diffusion delay equations on an unbounded domain. Discrete & Continuous Dynamical Systems, 2014, 34 (10) : 4343-4370. doi: 10.3934/dcds.2014.34.4343

[16]

Jesus Garcia Azorero, Juan J. Manfredi, I. Peral, Julio D. Rossi. Limits for Monge-Kantorovich mass transport problems. Communications on Pure & Applied Analysis, 2008, 7 (4) : 853-865. doi: 10.3934/cpaa.2008.7.853

[17]

Hongwei Chen. Blow-up estimates of positive solutions of a reaction-diffusion system. Conference Publications, 2003, 2003 (Special) : 182-188. doi: 10.3934/proc.2003.2003.182

[18]

Shi-Liang Wu, Tong-Chang Niu, Cheng-Hsiung Hsu. Global asymptotic stability of pushed traveling fronts for monostable delayed reaction-diffusion equations. Discrete & Continuous Dynamical Systems, 2017, 37 (6) : 3467-3486. doi: 10.3934/dcds.2017147

[19]

Aníbal Rodríguez-Bernal, Alejandro Vidal-López. A note on the existence of global solutions for reaction-diffusion equations with almost-monotonic nonlinearities. Communications on Pure & Applied Analysis, 2014, 13 (2) : 635-644. doi: 10.3934/cpaa.2014.13.635

[20]

Tarik Mohammed Touaoula. Global dynamics for a class of reaction-diffusion equations with distributed delay and neumann condition. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2473-2490. doi: 10.3934/cpaa.2020108

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (73)
  • HTML views (75)
  • Cited by (0)

Other articles
by authors

[Back to Top]