-
Previous Article
The relaxation limit of bipolar fluid models
- DCDS Home
- This Issue
-
Next Article
Combined effects of singular and exponential nonlinearities in fractional Kirchhoff problems
Orbit counting in polarized dynamical systems
Mathematics Department, Texas State University, San Marcos, TX 78666 |
We extend recent orbit counts for finitely generated semigroups acting on $ \mathbb{P}^N $ to certain infinitely generated, polarized semigroups acting on projective varieties. We then apply these results to semigroup orbits generated by some infinite sets of unicritical polynomials.
References:
[1] |
A. Baragar,
Rational points on $K3$ surfaces in $\mathbb{P}^1\times\mathbb{P}^1\times \mathbb{P}^1$, Math. Ann., 305 (1996), 541-558.
doi: 10.1007/BF01444236. |
[2] |
E. Bombieri and J. Pila,
The number of integral points on arcs and ovals, Duke Math. J., 59 (1989), 337-357.
doi: 10.1215/S0012-7094-89-05915-2. |
[3] |
Y. Bilu and R. Tichy,
The Diophantine equation $f(x) = g (y)$, Acta Arithmetica, 95 (2000), 261-288.
doi: 10.4064/aa-95-3-261-288. |
[4] |
W. Bosma, J. Cannon and C. Playoust,
The Magma algebra system I: The user language, J. Symbolic Comput., 24 (1997), 235-265.
doi: 10.1006/jsco.1996.0125. |
[5] |
B. Brindza,
On $S$-integral solutions of the Catalan equation, Acta Arith., 48 (1987), 397-412.
doi: 10.4064/aa-48-4-397-412. |
[6] |
G. Call and J. Silverman,
Canonical heights on varieties with morphisms, Compositio Math., 89 (1993), 163-205.
|
[7] |
R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, 2$^nd$ edition, Springer, New York, 2005. |
[8] |
G. Faltings,
Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math., 73 (1983), 349-366.
doi: 10.1007/BF01388432. |
[9] |
P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press, 2009.
![]() |
[10] |
D. R. Heath-Brown, Counting rational points on algebraic varieties, Analytic Number Theory, Lecture Notes in Math. Springer, Berlin, Heidelberg, (2006), 51–95.
doi: 10.1007/978-3-540-36364-4_2. |
[11] |
D. R. Heath-Brown,
The density of rational points on curves and surfaces, Ann. of Math., 155 (2002), 553-598.
doi: 10.2307/3062125. |
[12] |
V. Healey and W. Hindes,
Stochastic canonical heights, J. Number Theory, 201 (2019), 228-256.
doi: 10.1016/j.jnt.2019.02.020. |
[13] |
W. Hindes, Counting points of bounded height in monoid orbits, preprint, arXiv: 2006.08563. |
[14] |
W. Hindes, Dynamical and arithmetic degrees for random iterations of maps on projective space, Math. Proc. Camb. Philos. Soc, to appear. |
[15] |
P. Ingram,
Lower bounds on the canonical height associated to the morphism, $\phi(z) = z^ d+ c$, Monatsh. Math., 157 (2009), 69-89.
doi: 10.1007/s00605-008-0018-6. |
[16] |
S. Kawaguchi, Canonical heights for random iterations in certain varieties, Int. Math. Res. Not., Art. ID rnm 023, 2007 (2007), 33 pp. |
[17] |
S. Kawaguchi and Joseph H. Silverman,
On the dynamical and arithmetic degrees of rational self-maps of algebraic varieties, J. Reine Angew. Math., 713 (2016), 21-48.
doi: 10.1515/crelle-2014-0020. |
[18] |
R. Mason, Diophantine Equations Over Function Fields, London Mathematical Society Lecture Note Series, 96. Cambridge University Press, Cambridge, 1984.
doi: 10.1017/CBO9780511752490.![]() ![]() ![]() |
[19] |
J. Mello,
On quantitative estimates for quasiintegral points in orbits of semigroups of rational maps, New York J. Math., 25 (2019), 1091-1111.
|
[20] |
S. Schanuel,
On heights in number fields, Bull. Amer. Math. Soc., 70 (1964), 262-263.
doi: 10.1090/S0002-9904-1964-11110-1. |
[21] |
D. Zagier,
On the number of Markoff numbers below a given bound, Math. Comp., 39 (1982), 709-723.
doi: 10.1090/S0025-5718-1982-0669663-7. |
[22] |
Y. Zhang,
Bounded gaps between primes, Ann. of Math., 179 (2014), 1121-1174.
doi: 10.4007/annals.2014.179.3.7. |
show all references
References:
[1] |
A. Baragar,
Rational points on $K3$ surfaces in $\mathbb{P}^1\times\mathbb{P}^1\times \mathbb{P}^1$, Math. Ann., 305 (1996), 541-558.
doi: 10.1007/BF01444236. |
[2] |
E. Bombieri and J. Pila,
The number of integral points on arcs and ovals, Duke Math. J., 59 (1989), 337-357.
doi: 10.1215/S0012-7094-89-05915-2. |
[3] |
Y. Bilu and R. Tichy,
The Diophantine equation $f(x) = g (y)$, Acta Arithmetica, 95 (2000), 261-288.
doi: 10.4064/aa-95-3-261-288. |
[4] |
W. Bosma, J. Cannon and C. Playoust,
The Magma algebra system I: The user language, J. Symbolic Comput., 24 (1997), 235-265.
doi: 10.1006/jsco.1996.0125. |
[5] |
B. Brindza,
On $S$-integral solutions of the Catalan equation, Acta Arith., 48 (1987), 397-412.
doi: 10.4064/aa-48-4-397-412. |
[6] |
G. Call and J. Silverman,
Canonical heights on varieties with morphisms, Compositio Math., 89 (1993), 163-205.
|
[7] |
R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, 2$^nd$ edition, Springer, New York, 2005. |
[8] |
G. Faltings,
Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math., 73 (1983), 349-366.
doi: 10.1007/BF01388432. |
[9] |
P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press, 2009.
![]() |
[10] |
D. R. Heath-Brown, Counting rational points on algebraic varieties, Analytic Number Theory, Lecture Notes in Math. Springer, Berlin, Heidelberg, (2006), 51–95.
doi: 10.1007/978-3-540-36364-4_2. |
[11] |
D. R. Heath-Brown,
The density of rational points on curves and surfaces, Ann. of Math., 155 (2002), 553-598.
doi: 10.2307/3062125. |
[12] |
V. Healey and W. Hindes,
Stochastic canonical heights, J. Number Theory, 201 (2019), 228-256.
doi: 10.1016/j.jnt.2019.02.020. |
[13] |
W. Hindes, Counting points of bounded height in monoid orbits, preprint, arXiv: 2006.08563. |
[14] |
W. Hindes, Dynamical and arithmetic degrees for random iterations of maps on projective space, Math. Proc. Camb. Philos. Soc, to appear. |
[15] |
P. Ingram,
Lower bounds on the canonical height associated to the morphism, $\phi(z) = z^ d+ c$, Monatsh. Math., 157 (2009), 69-89.
doi: 10.1007/s00605-008-0018-6. |
[16] |
S. Kawaguchi, Canonical heights for random iterations in certain varieties, Int. Math. Res. Not., Art. ID rnm 023, 2007 (2007), 33 pp. |
[17] |
S. Kawaguchi and Joseph H. Silverman,
On the dynamical and arithmetic degrees of rational self-maps of algebraic varieties, J. Reine Angew. Math., 713 (2016), 21-48.
doi: 10.1515/crelle-2014-0020. |
[18] |
R. Mason, Diophantine Equations Over Function Fields, London Mathematical Society Lecture Note Series, 96. Cambridge University Press, Cambridge, 1984.
doi: 10.1017/CBO9780511752490.![]() ![]() ![]() |
[19] |
J. Mello,
On quantitative estimates for quasiintegral points in orbits of semigroups of rational maps, New York J. Math., 25 (2019), 1091-1111.
|
[20] |
S. Schanuel,
On heights in number fields, Bull. Amer. Math. Soc., 70 (1964), 262-263.
doi: 10.1090/S0002-9904-1964-11110-1. |
[21] |
D. Zagier,
On the number of Markoff numbers below a given bound, Math. Comp., 39 (1982), 709-723.
doi: 10.1090/S0025-5718-1982-0669663-7. |
[22] |
Y. Zhang,
Bounded gaps between primes, Ann. of Math., 179 (2014), 1121-1174.
doi: 10.4007/annals.2014.179.3.7. |
[1] |
Vladimir Dragović, Milena Radnović. Pseudo-integrable billiards and arithmetic dynamics. Journal of Modern Dynamics, 2014, 8 (1) : 109-132. doi: 10.3934/jmd.2014.8.109 |
[2] |
Richard Hofer, Arne Winterhof. On the arithmetic autocorrelation of the Legendre sequence. Advances in Mathematics of Communications, 2017, 11 (1) : 237-244. doi: 10.3934/amc.2017015 |
[3] |
Tanja Eisner, Rainer Nagel. Arithmetic progressions -- an operator theoretic view. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 657-667. doi: 10.3934/dcdss.2013.6.657 |
[4] |
Mehdi Pourbarat. On the arithmetic difference of middle Cantor sets. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4259-4278. doi: 10.3934/dcds.2018186 |
[5] |
Gerhard Frey. Relations between arithmetic geometry and public key cryptography. Advances in Mathematics of Communications, 2010, 4 (2) : 281-305. doi: 10.3934/amc.2010.4.281 |
[6] |
Wenzhi Luo, Zeév Rudnick, Peter Sarnak. The variance of arithmetic measures associated to closed geodesics on the modular surface. Journal of Modern Dynamics, 2009, 3 (2) : 271-309. doi: 10.3934/jmd.2009.3.271 |
[7] |
M. D. Todorov, C. I. Christov. Conservative numerical scheme in complex arithmetic for coupled nonlinear Schrödinger equations. Conference Publications, 2007, 2007 (Special) : 982-992. doi: 10.3934/proc.2007.2007.982 |
[8] |
Jiyoung Han. Quantitative oppenheim conjecture for $ S $-arithmetic quadratic forms of rank $ 3 $ and $ 4 $. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2205-2225. doi: 10.3934/dcds.2020359 |
[9] |
Chad Schoen. An arithmetic ball quotient surface whose Albanese variety is not of CM type. Electronic Research Announcements, 2014, 21: 132-136. doi: 10.3934/era.2014.21.132 |
[10] |
Kaushik Nath, Palash Sarkar. Efficient arithmetic in (pseudo-)mersenne prime order fields. Advances in Mathematics of Communications, 2022, 16 (2) : 303-348. doi: 10.3934/amc.2020113 |
[11] |
Laurent Imbert, Michael J. Jacobson, Jr.. Empirical optimization of divisor arithmetic on hyperelliptic curves over $\mathbb{F}_{2^m}$. Advances in Mathematics of Communications, 2013, 7 (4) : 485-502. doi: 10.3934/amc.2013.7.485 |
[12] |
Bao Qing Hu, Song Wang. A novel approach in uncertain programming part I: new arithmetic and order relation for interval numbers. Journal of Industrial and Management Optimization, 2006, 2 (4) : 351-371. doi: 10.3934/jimo.2006.2.351 |
[13] |
Rodrigo Abarzúa, Nicolas Thériault, Roberto Avanzi, Ismael Soto, Miguel Alfaro. Optimization of the arithmetic of the ideal class group for genus 4 hyperelliptic curves over projective coordinates. Advances in Mathematics of Communications, 2010, 4 (2) : 115-139. doi: 10.3934/amc.2010.4.115 |
[14] |
Brigitte Vallée. Euclidean dynamics. Discrete and Continuous Dynamical Systems, 2006, 15 (1) : 281-352. doi: 10.3934/dcds.2006.15.281 |
[15] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[16] |
N. Romero, A. Rovella, F. Vilamajó. Dynamics of vertical delay endomorphisms. Discrete and Continuous Dynamical Systems - B, 2003, 3 (3) : 409-422. doi: 10.3934/dcdsb.2003.3.409 |
[17] |
Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1 |
[18] |
Evelyn Sander, E. Barreto, S.J. Schiff, P. So. Dynamics of noninvertibility in delay equations. Conference Publications, 2005, 2005 (Special) : 768-777. doi: 10.3934/proc.2005.2005.768 |
[19] |
Luis Vega. The dynamics of vortex filaments with corners. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1581-1601. doi: 10.3934/cpaa.2015.14.1581 |
[20] |
Lluís Alsedà, David Juher, Pere Mumbrú. Minimal dynamics for tree maps. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 511-541. doi: 10.3934/dcds.2008.20.511 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]