January  2022, 42(1): 285-299. doi: 10.3934/dcds.2021116

Shadowing for families of endomorphisms of generalized group shifts

Département de mathématiques, Université du Québec à Montréal, Case postale 8888, Succursale Centre-ville, Montréal, QC, H3C 3P8, Canada

Received  April 2021 Revised  June 2021 Published  January 2022 Early access  August 2021

Let $ G $ be a countable monoid and let $ A $ be an Artinian group (resp. an Artinian module). Let $ \Sigma \subset A^G $ be a closed subshift which is also a subgroup (resp. a submodule) of $ A^G $. Suppose that $ \Gamma $ is a finitely generated monoid consisting of pairwise commuting cellular automata $ \Sigma \to \Sigma $ that are also homomorphisms of groups (resp. homomorphisms of modules) with monoid binary operation given by composition of maps. We show that the natural action of $ \Gamma $ on $ \Sigma $ satisfies a natural intrinsic shadowing property. Generalizations are also established for families of endomorphisms of admissible group subshifts.

Citation: Xuan Kien Phung. Shadowing for families of endomorphisms of generalized group shifts. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 285-299. doi: 10.3934/dcds.2021116
References:
[1]

D. V. Anosov, Geodesic flows on closed Riemann manifolds with negative curvature, Translated from the Russian by S. Feder Proceedings of the Steklov Institute of Mathematics, American Mathematical Society, 90, Providence, R.I., 1967.

[2]

S. Barbieri, F. García-Ramos and H. Li, Markovian properties of continuous group actions: Algebraic actions, entropy and the homoclinic group, preprint, arXiv: 1911.00785.

[3]

G. D. Birkhoff, An extension of Poincaré's last geometric theorem, Acta Math., 47 (1926), 297-311.  doi: 10.1007/BF02559515.

[4]

F. Blanchard and A. Maass, Dynamical properties of expansive one-sided cellular automata, Israel J. Math., 99 (1997), 149-174.  doi: 10.1007/BF02760680.

[5]

R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Second Revised Edition. With A Preface by David Ruelle. Edited by Jean-René Chazottes. Lecture Notes in Mathematics, 470. Springer-Verlag, Berlin, 2008.

[6]

T. Ceccherini-Silberstein and M. Coornaert, Cellular Automata and Groups, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-14034-1.

[7]

T. Ceccherini-Silberstein and M. Coornaert, On surjunctive monoids, Internat. J. Algebra Comput., 25 (2015), 567-606.  doi: 10.1142/S0218196715500113.

[8]

N. P. Chung and K. Lee, Topological stability and pseudo-orbit tracing property of group actions, Proc. Amer. Math. Soc., 146 (2018), 1047-1057.  doi: 10.1090/proc/13654.

[9]

F. Fiorenzi, Periodic configurations of subshifts on groups, Internat. J. Algebra Comput., 19 (2009), 315-335.  doi: 10.1142/S0218196709005123.

[10]

B. Kitchens and K. Schmidt, Automorphisms of compact groups, Ergodic Theory Dynam. Systems, 9 (1989), 691-735.  doi: 10.1017/S0143385700005290.

[11]

P. Kurka, Languages, equicontinuity and attractors in cellular automata, Ergodic Theory Dynam. Systems, 17 (1997), 417-433.  doi: 10.1017/S014338579706985X.

[12]

T. Meyerovitch, Pseudo-orbit tracing and algebraic actions of countable amenable groups, Ergodic Theory Dynam. Systems, 39 (2019), 2570-2591.  doi: 10.1017/etds.2017.126.

[13] J. v. Neumann, Theory of Self-Reproducing Automata, Univerity of Illinois Press, 1966. 
[14]

P. Oprocha, Shadowing in multi-dimensional shift spaces, Colloq. Math., 110 (2008), 451-460.  doi: 10.4064/cm110-2-8.

[15]

A. V. Osipov and S. B. Tikhomirov, Shadowing for actions of some finitely generated groups, Dyn. Syst., 29 (2014), 337-351.  doi: 10.1080/14689367.2014.902037.

[16]

X. K. Phung, On dynamical finiteness properties of algebraic group shifts, to appear in Israel J. Math., arXiv: 2010.04035.

[17]

S. Y. Pilyugin and S. B. Tikhomirov, Shadowing in actions of some abelian groups, Fund. Math., 179 (2003), 83-96.  doi: 10.4064/fm179-1-7.

[18]

V. Salo, When are group shifts of finite type?, preprint, arXiv: 1807.01951.

[19]

A. Schlette, Artinian, almost abelian groups and their groups of automorphisms, Pacific J. Math., 29 (1969), 403-425.  doi: 10.2140/pjm.1969.29.403.

[20]

K. Schmidt, Dynamical Systems of Algebraic Origin, Progress in Mathematics, 128, Birkhäuser Verlag, Basel, 1995.

[21]

P. Walters, On the pseudo-orbit tracing property and its relationship to stability, in The Structure of Attractors in Dynamical Systems, (Proc. Conf., North Dakota State Univ., Fargo, N.D., 1977), Lecture Notes in Math., 668, Springer, Berlin, 1978,231–244.

show all references

References:
[1]

D. V. Anosov, Geodesic flows on closed Riemann manifolds with negative curvature, Translated from the Russian by S. Feder Proceedings of the Steklov Institute of Mathematics, American Mathematical Society, 90, Providence, R.I., 1967.

[2]

S. Barbieri, F. García-Ramos and H. Li, Markovian properties of continuous group actions: Algebraic actions, entropy and the homoclinic group, preprint, arXiv: 1911.00785.

[3]

G. D. Birkhoff, An extension of Poincaré's last geometric theorem, Acta Math., 47 (1926), 297-311.  doi: 10.1007/BF02559515.

[4]

F. Blanchard and A. Maass, Dynamical properties of expansive one-sided cellular automata, Israel J. Math., 99 (1997), 149-174.  doi: 10.1007/BF02760680.

[5]

R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Second Revised Edition. With A Preface by David Ruelle. Edited by Jean-René Chazottes. Lecture Notes in Mathematics, 470. Springer-Verlag, Berlin, 2008.

[6]

T. Ceccherini-Silberstein and M. Coornaert, Cellular Automata and Groups, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-14034-1.

[7]

T. Ceccherini-Silberstein and M. Coornaert, On surjunctive monoids, Internat. J. Algebra Comput., 25 (2015), 567-606.  doi: 10.1142/S0218196715500113.

[8]

N. P. Chung and K. Lee, Topological stability and pseudo-orbit tracing property of group actions, Proc. Amer. Math. Soc., 146 (2018), 1047-1057.  doi: 10.1090/proc/13654.

[9]

F. Fiorenzi, Periodic configurations of subshifts on groups, Internat. J. Algebra Comput., 19 (2009), 315-335.  doi: 10.1142/S0218196709005123.

[10]

B. Kitchens and K. Schmidt, Automorphisms of compact groups, Ergodic Theory Dynam. Systems, 9 (1989), 691-735.  doi: 10.1017/S0143385700005290.

[11]

P. Kurka, Languages, equicontinuity and attractors in cellular automata, Ergodic Theory Dynam. Systems, 17 (1997), 417-433.  doi: 10.1017/S014338579706985X.

[12]

T. Meyerovitch, Pseudo-orbit tracing and algebraic actions of countable amenable groups, Ergodic Theory Dynam. Systems, 39 (2019), 2570-2591.  doi: 10.1017/etds.2017.126.

[13] J. v. Neumann, Theory of Self-Reproducing Automata, Univerity of Illinois Press, 1966. 
[14]

P. Oprocha, Shadowing in multi-dimensional shift spaces, Colloq. Math., 110 (2008), 451-460.  doi: 10.4064/cm110-2-8.

[15]

A. V. Osipov and S. B. Tikhomirov, Shadowing for actions of some finitely generated groups, Dyn. Syst., 29 (2014), 337-351.  doi: 10.1080/14689367.2014.902037.

[16]

X. K. Phung, On dynamical finiteness properties of algebraic group shifts, to appear in Israel J. Math., arXiv: 2010.04035.

[17]

S. Y. Pilyugin and S. B. Tikhomirov, Shadowing in actions of some abelian groups, Fund. Math., 179 (2003), 83-96.  doi: 10.4064/fm179-1-7.

[18]

V. Salo, When are group shifts of finite type?, preprint, arXiv: 1807.01951.

[19]

A. Schlette, Artinian, almost abelian groups and their groups of automorphisms, Pacific J. Math., 29 (1969), 403-425.  doi: 10.2140/pjm.1969.29.403.

[20]

K. Schmidt, Dynamical Systems of Algebraic Origin, Progress in Mathematics, 128, Birkhäuser Verlag, Basel, 1995.

[21]

P. Walters, On the pseudo-orbit tracing property and its relationship to stability, in The Structure of Attractors in Dynamical Systems, (Proc. Conf., North Dakota State Univ., Fargo, N.D., 1977), Lecture Notes in Math., 668, Springer, Berlin, 1978,231–244.

[1]

Zheng Yin, Ercai Chen. The conditional variational principle for maps with the pseudo-orbit tracing property. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 463-481. doi: 10.3934/dcds.2019019

[2]

Mike Boyle, Sompong Chuysurichay. The mapping class group of a shift of finite type. Journal of Modern Dynamics, 2018, 13: 115-145. doi: 10.3934/jmd.2018014

[3]

Van Cyr, John Franks, Bryna Kra, Samuel Petite. Distortion and the automorphism group of a shift. Journal of Modern Dynamics, 2018, 13: 147-161. doi: 10.3934/jmd.2018015

[4]

Flavio Abdenur, Lorenzo J. Díaz. Pseudo-orbit shadowing in the $C^1$ topology. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 223-245. doi: 10.3934/dcds.2007.17.223

[5]

Van Cyr, Bryna Kra. The automorphism group of a minimal shift of stretched exponential growth. Journal of Modern Dynamics, 2016, 10: 483-495. doi: 10.3934/jmd.2016.10.483

[6]

Peng Sun. Minimality and gluing orbit property. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4041-4056. doi: 10.3934/dcds.2019162

[7]

W. Patrick Hooper. An infinite surface with the lattice property Ⅱ: Dynamics of pseudo-Anosovs. Journal of Modern Dynamics, 2019, 14: 243-276. doi: 10.3934/jmd.2019009

[8]

Manseob Lee, Jumi Oh, Xiao Wen. Diffeomorphisms with a generalized Lipschitz shadowing property. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1913-1927. doi: 10.3934/dcds.2020346

[9]

Fang Zhang, Yunhua Zhou. On the limit quasi-shadowing property. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2861-2879. doi: 10.3934/dcds.2017123

[10]

Jean-Francois Bertazzon. Symbolic approach and induction in the Heisenberg group. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1209-1229. doi: 10.3934/dcds.2012.32.1209

[11]

Jonathan Meddaugh. Shadowing as a structural property of the space of dynamical systems. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2439-2451. doi: 10.3934/dcds.2021197

[12]

Konstantinos Drakakis. On the generalization of the Costas property in higher dimensions. Advances in Mathematics of Communications, 2010, 4 (1) : 1-22. doi: 10.3934/amc.2010.4.1

[13]

Makoto Mori. Higher order mixing property of piecewise linear transformations. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 915-934. doi: 10.3934/dcds.2000.6.915

[14]

Jihoon Lee, Ngocthach Nguyen. Flows with the weak two-sided limit shadowing property. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4375-4395. doi: 10.3934/dcds.2021040

[15]

Stefano Bianchini. On the shift differentiability of the flow generated by a hyperbolic system of conservation laws. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 329-350. doi: 10.3934/dcds.2000.6.329

[16]

Eldho K. Thomas, Nadya Markin, Frédérique Oggier. On Abelian group representability of finite groups. Advances in Mathematics of Communications, 2014, 8 (2) : 139-152. doi: 10.3934/amc.2014.8.139

[17]

Michele Zadra, Elizabeth L. Mansfield. Using Lie group integrators to solve two and higher dimensional variational problems with symmetry. Journal of Computational Dynamics, 2019, 6 (2) : 485-511. doi: 10.3934/jcd.2019025

[18]

Xueting Tian, Shirou Wang, Xiaodong Wang. Intermediate Lyapunov exponents for systems with periodic orbit gluing property. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1019-1032. doi: 10.3934/dcds.2019042

[19]

Peng Chen, Linfeng Mei, Xianhua Tang. Nonstationary homoclinic orbit for an infinite-dimensional fractional reaction-diffusion system. Discrete and Continuous Dynamical Systems - B, 2022, 27 (10) : 5389-5409. doi: 10.3934/dcdsb.2021279

[20]

Yoshikazu Katayama, Colin E. Sutherland and Masamichi Takesaki. The intrinsic invariant of an approximately finite dimensional factor and the cocycle conjugacy of discrete amenable group actions. Electronic Research Announcements, 1995, 1: 43-47.

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (225)
  • HTML views (185)
  • Cited by (0)

Other articles
by authors

[Back to Top]