January  2022, 42(1): 301-317. doi: 10.3934/dcds.2021117

Estimates the upper bounds of Dirichlet eigenvalues for fractional Laplacian

1. 

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

2. 

Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China

* Corresponding author: Hua Chen

Received  May 2021 Revised  June 2021 Published  January 2022 Early access  August 2021

Fund Project: This work is supported by National Natural Science Foundation of China (Grants Nos. 11631011 and 11626251) and China Postdoctoral Science Foundation (Grants No. 2020M672398)

Let $ \Omega\subset\mathbb{R}^n \; (n\geq 2) $ be a bounded domain with continuous boundary $ \partial\Omega $. In this paper, we study the Dirichlet eigenvalue problem of the fractional Laplacian which is restricted to $ \Omega $ with $ 0<s<1 $. Denoting by $ \lambda_{k} $ the $ k^{th} $ Dirichlet eigenvalue of $ (-\triangle)^{s}|_{\Omega} $, we establish the explicit upper bounds of the ratio $ \frac{\lambda_{k+1}}{\lambda_{1}} $, which have polynomially growth in $ k $ with optimal increase orders. Furthermore, we give the explicit lower bounds for the Riesz mean function $ R_{\sigma}(z) = \sum_{k}(z-\lambda_{k})_{+}^{\sigma} $ with $ \sigma\geq 1 $ and the trace of the Dirichlet heat kernel of fractional Laplacian.

Citation: Hua Chen, Hong-Ge Chen. Estimates the upper bounds of Dirichlet eigenvalues for fractional Laplacian. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 301-317. doi: 10.3934/dcds.2021117
References:
[1]

R. Bañuelos and T. Kulczycki, Trace estimates for stable processes, Probab. Theory Related Fields, 142 (2008), 313-338.  doi: 10.1007/s00440-007-0106-x.

[2]

R. BañuelosT. Kulczycki and B. Siudeja, On the trace of symmetric stable processes on Lipschitz domains, J. Funct. Anal., 257 (2009), 3329-3352.  doi: 10.1016/j.jfa.2009.06.037.

[3]

F. A. Berezin, Covariant and contravariant symbols of operators, (Russian), Izv. Akad. Nauk SSSR Ser. Mat., 36 (1972), 1134-1167.  doi: 10.1070/IM1972v006n05ABEH001913.

[4] G. M. BisciV. D. Radulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Cambridge University Press, Cambridge, 2016.  doi: 10.1017/CBO9781316282397.
[5]

R. M. Blumenthal and R. K. Getoor, The asymptotic distribution of the eigenvalues for a class of Markov operators, Pacific J. Math., 9 (1959), 399-408.  doi: 10.2140/pjm.1959.9.399.

[6]

L. BrascoE. Lindgren and E. Parini, The fractional Cheeger problem, Interfaces Free Bound., 16 (2014), 419-458.  doi: 10.4171/IFB/325.

[7]

L. Brasco and E. Parini, The second eigenvalue of the fractional $p$-Laplacian, Adv. Calc. Var., 9 (2016), 323-355.  doi: 10.1515/acv-2015-0007.

[8]

H. Chen and A. Zeng, Universal inequality and upper bounds of eigenvalues for non-integer poly-Laplacian on a bounded domain, Calc. Var. Partial Differential Equations, 56 (2017), 12 pp. doi: 10.1007/s00526-017-1220-y.

[9]

Z. Q. Chen and R. Song, Two-sided eigenvalue estimates for subordinate processes in domains, J. Funct. Anal., 226 (2005), 90-113.  doi: 10.1016/j.jfa.2005.05.004.

[10]

Q. M. Cheng and H. C. Yang, Bounds on eigenvalues of Dirichlet Laplacian, Math. Ann., 337 (2007), 159-175.  doi: 10.1007/s00208-006-0030-x.

[11]

G. Chiti, Inequalities for the first three membrane eigenvalues, Boll. Un. Mat. Ital., 18 (1981), 144-148. 

[12]

G. Chiti, An isoperimetric inequality for the eigenfunctions of linear second order elliptic operators, Boll. Un. Mat. Ital., 1 (1982), 145-151. 

[13]

B. K. Driver, Analysis Tools with Applications, Lecture Notes, Springer, Berlin, 2003. Available from: http://www.math.ucsd.edu/ bdriver/231-02-03/Lecture_Notes/PDE-Anal-Book/analpde1.pdf.

[14]

R. L. Frank, Eigenvalue bounds for the fractional Laplacian: A review, in Recent Developments in Nonlocal Theory, De Gruyter, Berlin, 2018,210–235. doi: 10.1515/9783110571561-007.

[15]

R. L. Frank and L. Geisinger, Refined semiclassical asymptotics for fractional powers of the Laplace operator, J. Reine Angew. Math., 712 (2016), 1-37.  doi: 10.1515/crelle-2013-0120.

[16]

G. Franzina and G. Palatucci, Fractional $p$-eigenvalues, Riv. Math. Univ. Parma (N.S.), 5 (2014), 373-386. 

[17]

L. Geisinger, A short proof of Weyl's law for fractional differential operators, J. Math. Phys., 55 (2014), 011504. doi: 10.1063/1.4861935.

[18]

E. M. Harrell II and L. Hermi, On Riesz means of eigenvalues, Comm. Partial Differential Equations, 36 (2011), 1521-1543.  doi: 10.1080/03605302.2011.595865.

[19]

E. M. Harrell II and S. Y. Yolcu, Eigenvalue inequalities for Klein-Gordon operators, J. Funct. Anal., 256 (2009), 3977-3995.  doi: 10.1016/j.jfa.2008.12.008.

[20]

L. Hermi, Two new Weyl-type bounds for the Dirichlet Laplacian, Trans. Amer. Math. Soc., 360 (2008), 1539-1558.  doi: 10.1090/S0002-9947-07-04254-7.

[21]

V. Ivrii, Spectral asymptotics for fractional Laplacians, in Differential Equations, Mathematical Physics, and Applications: Selim Grigorievich Krein Centennial, Contemp. Math., 734, Amer. Math. Soc., [Providence], RI, 2019,159–170. doi: 10.1090/conm/734/14770.

[22]

P. Kröger, Estimates for sums of eigenvalues of the Laplacian, J. Funct. Anal., 126 (1994), 217-227.  doi: 10.1006/jfan.1994.1146.

[23]

M. Kwaśnicki, Eigenvalues of the fractional Laplace operator in the interval, J. Funct. Anal., 262 (2012), 2379-2402.  doi: 10.1016/j.jfa.2011.12.004.

[24]

A. Laptev, Dirichlet and Neumann eigenvalue problems on domains in Euclidean spaces, J. Funct. Anal., 151 (1997), 531-545.  doi: 10.1006/jfan.1997.3155.

[25]

P. Li and S. T. Yau, On the Schrödinger equation and the eigenvalue problem, Comm. Math. Phys., 88 (1983), 309-318.  doi: 10.1007/BF01213210.

[26]

G. Pólya, On the eigenvalues of vibrating membranes, Proc. London Math. Soc., 11 (1961), 419-433.  doi: 10.1112/plms/s3-11.1.419.

[27]

Y. Safarov, Lower bounds for the generalized counting function, in The Maz'ya Anniversary Collection, (eds. J. Rossmann, P. Takac and G. Wildenhain), Birkhäuser, Basel, 2 (1999), 275–293. doi: 10.1007/978-3-0348-8672-7_16.

[28]

H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann., 71 (1912), 441-479.  doi: 10.1007/BF01456804.

[29]

S. Y. Yolcu and T. Yolcu, Estimates for the sums of eigenvalues of the fractional Laplacian on a bounded domain, Commun. Contemp. Math., 15 (2013), 1250048. doi: 10.1142/S0219199712500484.

show all references

References:
[1]

R. Bañuelos and T. Kulczycki, Trace estimates for stable processes, Probab. Theory Related Fields, 142 (2008), 313-338.  doi: 10.1007/s00440-007-0106-x.

[2]

R. BañuelosT. Kulczycki and B. Siudeja, On the trace of symmetric stable processes on Lipschitz domains, J. Funct. Anal., 257 (2009), 3329-3352.  doi: 10.1016/j.jfa.2009.06.037.

[3]

F. A. Berezin, Covariant and contravariant symbols of operators, (Russian), Izv. Akad. Nauk SSSR Ser. Mat., 36 (1972), 1134-1167.  doi: 10.1070/IM1972v006n05ABEH001913.

[4] G. M. BisciV. D. Radulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Cambridge University Press, Cambridge, 2016.  doi: 10.1017/CBO9781316282397.
[5]

R. M. Blumenthal and R. K. Getoor, The asymptotic distribution of the eigenvalues for a class of Markov operators, Pacific J. Math., 9 (1959), 399-408.  doi: 10.2140/pjm.1959.9.399.

[6]

L. BrascoE. Lindgren and E. Parini, The fractional Cheeger problem, Interfaces Free Bound., 16 (2014), 419-458.  doi: 10.4171/IFB/325.

[7]

L. Brasco and E. Parini, The second eigenvalue of the fractional $p$-Laplacian, Adv. Calc. Var., 9 (2016), 323-355.  doi: 10.1515/acv-2015-0007.

[8]

H. Chen and A. Zeng, Universal inequality and upper bounds of eigenvalues for non-integer poly-Laplacian on a bounded domain, Calc. Var. Partial Differential Equations, 56 (2017), 12 pp. doi: 10.1007/s00526-017-1220-y.

[9]

Z. Q. Chen and R. Song, Two-sided eigenvalue estimates for subordinate processes in domains, J. Funct. Anal., 226 (2005), 90-113.  doi: 10.1016/j.jfa.2005.05.004.

[10]

Q. M. Cheng and H. C. Yang, Bounds on eigenvalues of Dirichlet Laplacian, Math. Ann., 337 (2007), 159-175.  doi: 10.1007/s00208-006-0030-x.

[11]

G. Chiti, Inequalities for the first three membrane eigenvalues, Boll. Un. Mat. Ital., 18 (1981), 144-148. 

[12]

G. Chiti, An isoperimetric inequality for the eigenfunctions of linear second order elliptic operators, Boll. Un. Mat. Ital., 1 (1982), 145-151. 

[13]

B. K. Driver, Analysis Tools with Applications, Lecture Notes, Springer, Berlin, 2003. Available from: http://www.math.ucsd.edu/ bdriver/231-02-03/Lecture_Notes/PDE-Anal-Book/analpde1.pdf.

[14]

R. L. Frank, Eigenvalue bounds for the fractional Laplacian: A review, in Recent Developments in Nonlocal Theory, De Gruyter, Berlin, 2018,210–235. doi: 10.1515/9783110571561-007.

[15]

R. L. Frank and L. Geisinger, Refined semiclassical asymptotics for fractional powers of the Laplace operator, J. Reine Angew. Math., 712 (2016), 1-37.  doi: 10.1515/crelle-2013-0120.

[16]

G. Franzina and G. Palatucci, Fractional $p$-eigenvalues, Riv. Math. Univ. Parma (N.S.), 5 (2014), 373-386. 

[17]

L. Geisinger, A short proof of Weyl's law for fractional differential operators, J. Math. Phys., 55 (2014), 011504. doi: 10.1063/1.4861935.

[18]

E. M. Harrell II and L. Hermi, On Riesz means of eigenvalues, Comm. Partial Differential Equations, 36 (2011), 1521-1543.  doi: 10.1080/03605302.2011.595865.

[19]

E. M. Harrell II and S. Y. Yolcu, Eigenvalue inequalities for Klein-Gordon operators, J. Funct. Anal., 256 (2009), 3977-3995.  doi: 10.1016/j.jfa.2008.12.008.

[20]

L. Hermi, Two new Weyl-type bounds for the Dirichlet Laplacian, Trans. Amer. Math. Soc., 360 (2008), 1539-1558.  doi: 10.1090/S0002-9947-07-04254-7.

[21]

V. Ivrii, Spectral asymptotics for fractional Laplacians, in Differential Equations, Mathematical Physics, and Applications: Selim Grigorievich Krein Centennial, Contemp. Math., 734, Amer. Math. Soc., [Providence], RI, 2019,159–170. doi: 10.1090/conm/734/14770.

[22]

P. Kröger, Estimates for sums of eigenvalues of the Laplacian, J. Funct. Anal., 126 (1994), 217-227.  doi: 10.1006/jfan.1994.1146.

[23]

M. Kwaśnicki, Eigenvalues of the fractional Laplace operator in the interval, J. Funct. Anal., 262 (2012), 2379-2402.  doi: 10.1016/j.jfa.2011.12.004.

[24]

A. Laptev, Dirichlet and Neumann eigenvalue problems on domains in Euclidean spaces, J. Funct. Anal., 151 (1997), 531-545.  doi: 10.1006/jfan.1997.3155.

[25]

P. Li and S. T. Yau, On the Schrödinger equation and the eigenvalue problem, Comm. Math. Phys., 88 (1983), 309-318.  doi: 10.1007/BF01213210.

[26]

G. Pólya, On the eigenvalues of vibrating membranes, Proc. London Math. Soc., 11 (1961), 419-433.  doi: 10.1112/plms/s3-11.1.419.

[27]

Y. Safarov, Lower bounds for the generalized counting function, in The Maz'ya Anniversary Collection, (eds. J. Rossmann, P. Takac and G. Wildenhain), Birkhäuser, Basel, 2 (1999), 275–293. doi: 10.1007/978-3-0348-8672-7_16.

[28]

H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann., 71 (1912), 441-479.  doi: 10.1007/BF01456804.

[29]

S. Y. Yolcu and T. Yolcu, Estimates for the sums of eigenvalues of the fractional Laplacian on a bounded domain, Commun. Contemp. Math., 15 (2013), 1250048. doi: 10.1142/S0219199712500484.

[1]

Selma Yildirim Yolcu, Türkay Yolcu. Sharper estimates on the eigenvalues of Dirichlet fractional Laplacian. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2209-2225. doi: 10.3934/dcds.2015.35.2209

[2]

Lorenzo Brasco, Enea Parini, Marco Squassina. Stability of variational eigenvalues for the fractional $p-$Laplacian. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1813-1845. doi: 10.3934/dcds.2016.36.1813

[3]

Vladimir Georgiev, Koichi Taniguchi. On fractional Leibniz rule for Dirichlet Laplacian in exterior domain. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1101-1115. doi: 10.3934/dcds.2019046

[4]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3337-3349. doi: 10.3934/dcdss.2020443

[5]

Tadeusz Kulczycki, Robert Stańczy. Multiple solutions for Dirichlet nonlinear BVPs involving fractional Laplacian. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2581-2591. doi: 10.3934/dcdsb.2014.19.2581

[6]

Ahmad Z. Fino, Mokhtar Kirane. The Cauchy problem for heat equation with fractional Laplacian and exponential nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3625-3650. doi: 10.3934/cpaa.2020160

[7]

Luc Robbiano. Counting function for interior transmission eigenvalues. Mathematical Control and Related Fields, 2016, 6 (1) : 167-183. doi: 10.3934/mcrf.2016.6.167

[8]

Todd Kapitula, Björn Sandstede. Eigenvalues and resonances using the Evans function. Discrete and Continuous Dynamical Systems, 2004, 10 (4) : 857-869. doi: 10.3934/dcds.2004.10.857

[9]

Luciano Pandolfi. Riesz systems, spectral controllability and a source identification problem for heat equations with memory. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 745-759. doi: 10.3934/dcdss.2011.4.745

[10]

François Bolley, Arnaud Guillin, Xinyu Wang. Non ultracontractive heat kernel bounds by Lyapunov conditions. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 857-870. doi: 10.3934/dcds.2015.35.857

[11]

Sandra Carillo, Vanda Valente, Giorgio Vergara Caffarelli. Heat conduction with memory: A singular kernel problem. Evolution Equations and Control Theory, 2014, 3 (3) : 399-410. doi: 10.3934/eect.2014.3.399

[12]

Leandro M. Del Pezzo, Julio D. Rossi. Eigenvalues for a nonlocal pseudo $p-$Laplacian. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6737-6765. doi: 10.3934/dcds.2016093

[13]

Monique Dauge, Thomas Ourmières-Bonafos, Nicolas Raymond. Spectral asymptotics of the Dirichlet Laplacian in a conical layer. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1239-1258. doi: 10.3934/cpaa.2015.14.1239

[14]

Huicong Li, Jingyu Li. Asymptotic behavior of Dirichlet eigenvalues on a body coated by functionally graded material. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1493-1516. doi: 10.3934/cpaa.2017071

[15]

Yutong Chen, Jiabao Su. Resonant problems for fractional Laplacian. Communications on Pure and Applied Analysis, 2017, 16 (1) : 163-188. doi: 10.3934/cpaa.2017008

[16]

Giorgio Metafune, Chiara Spina. Heat Kernel estimates for some elliptic operators with unbounded diffusion coefficients. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2285-2299. doi: 10.3934/dcds.2012.32.2285

[17]

Semyon Yakubovich. The heat kernel and Heisenberg inequalities related to the Kontorovich-Lebedev transform. Communications on Pure and Applied Analysis, 2011, 10 (2) : 745-760. doi: 10.3934/cpaa.2011.10.745

[18]

Kazuhiro Ishige, Tatsuki Kawakami, Kanako Kobayashi. Global solutions for a nonlinear integral equation with a generalized heat kernel. Discrete and Continuous Dynamical Systems - S, 2014, 7 (4) : 767-783. doi: 10.3934/dcdss.2014.7.767

[19]

M. P. de Oliveira. On 3-graded Lie algebras, Jordan pairs and the canonical kernel function. Electronic Research Announcements, 2003, 9: 142-151.

[20]

Fábio R. Pereira. Multiplicity results for fractional systems crossing high eigenvalues. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2069-2088. doi: 10.3934/cpaa.2017102

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (282)
  • HTML views (218)
  • Cited by (0)

Other articles
by authors

[Back to Top]