American Institute of Mathematical Sciences

January  2022, 42(1): 403-423. doi: 10.3934/dcds.2021122

The critical points of the elastic energy among curves pinned at endpoints

 Mathematical Institute, Tohoku University, Aoba, Sendai, 980-8578, Japan

Received  January 2021 Revised  May 2021 Published  January 2022 Early access  September 2021

Fund Project: The author was supported by Grant-in-Aid for JSPS Fellows 19J2074

In this paper we find curves minimizing the elastic energy among curves whose length is fixed and whose ends are pinned. Applying the shooting method, we can identify all critical points explicitly and determine which curve is the global minimizer. As a result we show that the critical points consist of wavelike elasticae and the minimizers do not have any loops or interior inflection points.

Citation: Kensuke Yoshizawa. The critical points of the elastic energy among curves pinned at endpoints. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 403-423. doi: 10.3934/dcds.2021122
References:
 [1] S. S. Antman, Nonlinear Problems of Elasticity, Applied Mathematical Sciences, 107, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4757-4147-6. [2] J. J. Arroyo, O. J. Garay and A. Pámpano, Boundary value problems for Euler-Bernoulli planar elastica. A solution construction procedure, J. Elasticity, 139 (2020), 359-388.  doi: 10.1007/s10659-019-09755-7. [3] S. Avvakumov, O. Karpenkov and A. Sossinsky, Euler elasticae in the plane and the Whitney-Graustein theorem, Russ. J. Math. Phys., 20 (2013), 257-267.  doi: 10.1134/S1061920813030011. [4] M. Bergner, A. Dall'Acqua and S. Fröhlich, Symmetric Willmore surfaces of revolution satisfying natural boundary conditions, Calc. Var. Partial Differential Equations, 39 (2010), 361-378.  doi: 10.1007/s00526-010-0313-7. [5] P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, 2$^{nd}$ edition, Die Grundlehren der mathematischen Wissenschaften, 67, Springer-Verlag, New York-Heidelberg, 1971. [6] T. Chan, A. Marquina and P. Mulet, High-order total variation-based image restoration, SIAM J. Sci. Comput., 22 (2000), 503-516.  doi: 10.1137/S1064827598344169. [7] T. F. Chan, S. H. Kang and J. Shen, Euler's elastica and curvature-based inpainting, SIAM J. Appl. Math., 63 (2002), 564-592.  doi: 10.1137/S0036139901390088. [8] A. Dall'Acqua, Uniqueness for the homogeneous Dirichlet Willmore boundary value problem, Ann. Global Anal. Geom., 42 (2012), 411-420.  doi: 10.1007/s10455-012-9320-6. [9] A. Dall'Acqua, K. Deckelnick and H.-C. Grunau, Classical solutions to the Dirichlet problem for Willmore surfaces of revolution, Adv. Calc. Var., 1 (2008), 379-397.  doi: 10.1515/ACV.2008.016. [10] A. Dall'Acqua, K. Deckelnick and G. Wheeler, Unstable Willmore surfaces of revolution subject to natural boundary conditions, Calc. Var. Partial Differential Equations, 48 (2013), 293-313.  doi: 10.1007/s00526-012-0551-y. [11] A. Dall'Acqua, S. Fröhlich, H.-C. Grunau and F. Schieweck, Symmetric Willmore surfaces of revolution satisfying arbitrary Dirichlet boundary data, Adv. Calc. Var., 4 (2011), 1-81.  doi: 10.1515/acv.2010.022. [12] A. Dall'Acqua, M. Novaga and A. Pluda, Minimal elastic networks, Indiana Univ. Math. J., 69 (2020), 1909-1932.  doi: 10.1512/iumj.2020.69.8036. [13] G. Dal Maso, I. Fonseca, G. Leoni and M. Morini, A higher order model for image restoration: The one-dimensional case, SIAM J. Math. Anal., 40 (2009), 2351-2391.  doi: 10.1137/070697823. [14] F. Dayrens, S. Masnou and M. Novaga, Existence, regularity and structure of confined elasticae, ESAIM Control Optim. Calc. Var., 24, (2018), 25–43. doi: 10.1051/cocv/2016073. [15] K. Deckelnick and H.-C. Grunau, Boundary value problems for the one-dimensional Willmore equation, Calc. Var. Partial Differential Equations, 30 (2007), 293-314.  doi: 10.1007/s00526-007-0089-6. [16] K. Deckelnick and H.-C. Grunau, Stability and symmetry in the Navier problem for the one-dimensional Willmore equation, SIAM J. Math. Anal., 40 (2008/09), 2055-2076.  doi: 10.1137/07069033X. [17] S. Eichmann and A. Koeller, Symmetry for Willmore surfaces of revolution, J. Geom. Anal., 27 (2017), 618-642.  doi: 10.1007/s12220-016-9692-0. [18] L. Euler, Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes, Sive Solutio Problematis Isoperimetrici Lattissimo Sensu Accepti, (Latin) Edidit C. Carathédory. Societas Scientiarum Naturalium Helveticae, Bern, 1952. [19] N. Koiso, Elasticae in a Riemannian submanifold, Osaka J. Math., 29 (1992), 539-543. [20] J. Langer and D. A. Singer, The total squared curvature of closed curves, J. Differ. Geom., 20 (1984), 1-22. [21] J. Langer and D. A. Singer, Knotted elastic curves in $\mathbb{R}^3$, J. Lond. Math. Soc. (2), 30 (1984), 512-520.  doi: 10.1112/jlms/s2-30.3.512. [22] J. Langer and D. A. Singer, Curve straightening and a minimax argument for closed elastic curves, Topology, 24 (1985), 75-88. [23] R. Levien, The Elastica: A mathematical History, Technical Report No. UCB/EECS-2008-10, University of California, Berkeley, 2008. [24] A. Linnér, Unified representations of nonlinear splines, J. Approx. Theory, 84 (1996), 315-350.  doi: 10.1006/jath.1996.0022. [25] A. Linnér, Explicit elastic curves, Ann. Global Anal. Geom., 16 (1998), 445-475.  doi: 10.1023/A:1006526817291. [26] E. A. Love, A Treatise on the Mathematical Theory of Elasticity, Dover Publications, New York, 1944. [27] R. Mandel, Boundary value problems for Willmore curves in $\mathbb{R}^2$, Calc. Var. Partial Differential Equations, 54 (2015), 3905-3925.  doi: 10.1007/s00526-015-0925-z. [28] R. Mandel, Explicit formulas and symmetry breaking for Willmore surfaces of revolution, Ann. Global Anal. Geom., 54 (2018), 187-236.  doi: 10.1007/s10455-018-9598-0. [29] T. Miura, Elastic curves and phase transitions, Math. Ann., 376 (2020), 1629-1674.  doi: 10.1007/s00208-019-01821-8. [30] T. Miura, Li-Yau type inequalities for curves in any codimension, preprint, arXiv: 2102.06597. [31] M. Müller and F. Rupp, A Li-Yau inequality for the 1-dimensional Willmore energy, to appear in Adv. Calc. Var., arXiv: 2101.08509. [32] D. Mumford, Elastica and computer vision, algebraic geometry and its applications (West Lafayette, IN, 1990), Springer, New York, (1994), 491–506. [33] M. Murai, W. Matsumoto and S. Yotsutani, One can hear the shape of some non-convex drums, More Progress in Analysis, Proc. 5th ISAAC Congress, (2009), 863–872. [34] M. Murai, W. Matsumoto and S. Yotsutani, Representation formula for the plane closed elastic curves, Discrete Contin. Dyn. Syst., Dynamical Systems, Differential Equations and Applications. 2013, 9th AIMS Conference. Suppl., (2013), 565–585. doi: 10.3934/proc.2013.2013.565. [35] J. C. C. Nitsche, Boundary value problems for variational integrals involving surface curvatures, Q. Appl. Math., 51 (1993), 363-387.  doi: 10.1090/qam/1218374. [36] Y. L. Sachkov, Conjugate points in the Euler elastic problem, J. Dyn. Control Syst., 14 (2008), 409-439.  doi: 10.1007/s10883-008-9044-x. [37] Y. L. Sachkov, Maxwell strata in the Euler elastic problem, J. Dyn. Control Syst., 14 (2008), 169-234.  doi: 10.1007/s10883-008-9039-7. [38] Y. L. Sachkov, Closed Euler elasticae, Tr. Mat. Inst. Steklova, Steklov Inst. Math., 278 (2012), 218-232.  doi: 10.1134/s0081543812060211. [39] Y. L. Sachkov and E. F. Sachkova, Exponential mapping in Euler's elastic problem, J. Dyn. Control Syst., 20 (2014), 443-464.  doi: 10.1007/s10883-014-9211-1. [40] R. Schätzle, The Willmore boundary problem, Calc. Var. Partial Differential Equations, 37 (2010), 275-302.  doi: 10.1007/s00526-009-0244-3. [41] D. A. Singer, Lectures on elastic curves and rods. Curvature and variational modeling in physics and biophysics, AIP Conf. Proc., Amer. Inst. Phys., Melville, NY, 1002 (2008), 3-32.  doi: 10.1063/1.2918095. [42] C. Truesdell, The influence of elasticity on analysis: The classic heritage, Bull. Amer. Math. Soc. (N.S.), 9 (1983), 293-310.  doi: 10.1090/S0273-0979-1983-15187-X. [43] K. Watanabe, Planar $p$-elastic curves and related generalized complete elliptic integrals, Kodai Math. J., 37 (2014), 453-474.  doi: 10.2996/kmj/1404393898. [44] H. Yanamoto, On the elastic closed plane curves, Kodai Math. J., 8 (1985), 224-235.  doi: 10.2996/kmj/1138037048.

show all references

References:
 [1] S. S. Antman, Nonlinear Problems of Elasticity, Applied Mathematical Sciences, 107, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4757-4147-6. [2] J. J. Arroyo, O. J. Garay and A. Pámpano, Boundary value problems for Euler-Bernoulli planar elastica. A solution construction procedure, J. Elasticity, 139 (2020), 359-388.  doi: 10.1007/s10659-019-09755-7. [3] S. Avvakumov, O. Karpenkov and A. Sossinsky, Euler elasticae in the plane and the Whitney-Graustein theorem, Russ. J. Math. Phys., 20 (2013), 257-267.  doi: 10.1134/S1061920813030011. [4] M. Bergner, A. Dall'Acqua and S. Fröhlich, Symmetric Willmore surfaces of revolution satisfying natural boundary conditions, Calc. Var. Partial Differential Equations, 39 (2010), 361-378.  doi: 10.1007/s00526-010-0313-7. [5] P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, 2$^{nd}$ edition, Die Grundlehren der mathematischen Wissenschaften, 67, Springer-Verlag, New York-Heidelberg, 1971. [6] T. Chan, A. Marquina and P. Mulet, High-order total variation-based image restoration, SIAM J. Sci. Comput., 22 (2000), 503-516.  doi: 10.1137/S1064827598344169. [7] T. F. Chan, S. H. Kang and J. Shen, Euler's elastica and curvature-based inpainting, SIAM J. Appl. Math., 63 (2002), 564-592.  doi: 10.1137/S0036139901390088. [8] A. Dall'Acqua, Uniqueness for the homogeneous Dirichlet Willmore boundary value problem, Ann. Global Anal. Geom., 42 (2012), 411-420.  doi: 10.1007/s10455-012-9320-6. [9] A. Dall'Acqua, K. Deckelnick and H.-C. Grunau, Classical solutions to the Dirichlet problem for Willmore surfaces of revolution, Adv. Calc. Var., 1 (2008), 379-397.  doi: 10.1515/ACV.2008.016. [10] A. Dall'Acqua, K. Deckelnick and G. Wheeler, Unstable Willmore surfaces of revolution subject to natural boundary conditions, Calc. Var. Partial Differential Equations, 48 (2013), 293-313.  doi: 10.1007/s00526-012-0551-y. [11] A. Dall'Acqua, S. Fröhlich, H.-C. Grunau and F. Schieweck, Symmetric Willmore surfaces of revolution satisfying arbitrary Dirichlet boundary data, Adv. Calc. Var., 4 (2011), 1-81.  doi: 10.1515/acv.2010.022. [12] A. Dall'Acqua, M. Novaga and A. Pluda, Minimal elastic networks, Indiana Univ. Math. J., 69 (2020), 1909-1932.  doi: 10.1512/iumj.2020.69.8036. [13] G. Dal Maso, I. Fonseca, G. Leoni and M. Morini, A higher order model for image restoration: The one-dimensional case, SIAM J. Math. Anal., 40 (2009), 2351-2391.  doi: 10.1137/070697823. [14] F. Dayrens, S. Masnou and M. Novaga, Existence, regularity and structure of confined elasticae, ESAIM Control Optim. Calc. Var., 24, (2018), 25–43. doi: 10.1051/cocv/2016073. [15] K. Deckelnick and H.-C. Grunau, Boundary value problems for the one-dimensional Willmore equation, Calc. Var. Partial Differential Equations, 30 (2007), 293-314.  doi: 10.1007/s00526-007-0089-6. [16] K. Deckelnick and H.-C. Grunau, Stability and symmetry in the Navier problem for the one-dimensional Willmore equation, SIAM J. Math. Anal., 40 (2008/09), 2055-2076.  doi: 10.1137/07069033X. [17] S. Eichmann and A. Koeller, Symmetry for Willmore surfaces of revolution, J. Geom. Anal., 27 (2017), 618-642.  doi: 10.1007/s12220-016-9692-0. [18] L. Euler, Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes, Sive Solutio Problematis Isoperimetrici Lattissimo Sensu Accepti, (Latin) Edidit C. Carathédory. Societas Scientiarum Naturalium Helveticae, Bern, 1952. [19] N. Koiso, Elasticae in a Riemannian submanifold, Osaka J. Math., 29 (1992), 539-543. [20] J. Langer and D. A. Singer, The total squared curvature of closed curves, J. Differ. Geom., 20 (1984), 1-22. [21] J. Langer and D. A. Singer, Knotted elastic curves in $\mathbb{R}^3$, J. Lond. Math. Soc. (2), 30 (1984), 512-520.  doi: 10.1112/jlms/s2-30.3.512. [22] J. Langer and D. A. Singer, Curve straightening and a minimax argument for closed elastic curves, Topology, 24 (1985), 75-88. [23] R. Levien, The Elastica: A mathematical History, Technical Report No. UCB/EECS-2008-10, University of California, Berkeley, 2008. [24] A. Linnér, Unified representations of nonlinear splines, J. Approx. Theory, 84 (1996), 315-350.  doi: 10.1006/jath.1996.0022. [25] A. Linnér, Explicit elastic curves, Ann. Global Anal. Geom., 16 (1998), 445-475.  doi: 10.1023/A:1006526817291. [26] E. A. Love, A Treatise on the Mathematical Theory of Elasticity, Dover Publications, New York, 1944. [27] R. Mandel, Boundary value problems for Willmore curves in $\mathbb{R}^2$, Calc. Var. Partial Differential Equations, 54 (2015), 3905-3925.  doi: 10.1007/s00526-015-0925-z. [28] R. Mandel, Explicit formulas and symmetry breaking for Willmore surfaces of revolution, Ann. Global Anal. Geom., 54 (2018), 187-236.  doi: 10.1007/s10455-018-9598-0. [29] T. Miura, Elastic curves and phase transitions, Math. Ann., 376 (2020), 1629-1674.  doi: 10.1007/s00208-019-01821-8. [30] T. Miura, Li-Yau type inequalities for curves in any codimension, preprint, arXiv: 2102.06597. [31] M. Müller and F. Rupp, A Li-Yau inequality for the 1-dimensional Willmore energy, to appear in Adv. Calc. Var., arXiv: 2101.08509. [32] D. Mumford, Elastica and computer vision, algebraic geometry and its applications (West Lafayette, IN, 1990), Springer, New York, (1994), 491–506. [33] M. Murai, W. Matsumoto and S. Yotsutani, One can hear the shape of some non-convex drums, More Progress in Analysis, Proc. 5th ISAAC Congress, (2009), 863–872. [34] M. Murai, W. Matsumoto and S. Yotsutani, Representation formula for the plane closed elastic curves, Discrete Contin. Dyn. Syst., Dynamical Systems, Differential Equations and Applications. 2013, 9th AIMS Conference. Suppl., (2013), 565–585. doi: 10.3934/proc.2013.2013.565. [35] J. C. C. Nitsche, Boundary value problems for variational integrals involving surface curvatures, Q. Appl. Math., 51 (1993), 363-387.  doi: 10.1090/qam/1218374. [36] Y. L. Sachkov, Conjugate points in the Euler elastic problem, J. Dyn. Control Syst., 14 (2008), 409-439.  doi: 10.1007/s10883-008-9044-x. [37] Y. L. Sachkov, Maxwell strata in the Euler elastic problem, J. Dyn. Control Syst., 14 (2008), 169-234.  doi: 10.1007/s10883-008-9039-7. [38] Y. L. Sachkov, Closed Euler elasticae, Tr. Mat. Inst. Steklova, Steklov Inst. Math., 278 (2012), 218-232.  doi: 10.1134/s0081543812060211. [39] Y. L. Sachkov and E. F. Sachkova, Exponential mapping in Euler's elastic problem, J. Dyn. Control Syst., 20 (2014), 443-464.  doi: 10.1007/s10883-014-9211-1. [40] R. Schätzle, The Willmore boundary problem, Calc. Var. Partial Differential Equations, 37 (2010), 275-302.  doi: 10.1007/s00526-009-0244-3. [41] D. A. Singer, Lectures on elastic curves and rods. Curvature and variational modeling in physics and biophysics, AIP Conf. Proc., Amer. Inst. Phys., Melville, NY, 1002 (2008), 3-32.  doi: 10.1063/1.2918095. [42] C. Truesdell, The influence of elasticity on analysis: The classic heritage, Bull. Amer. Math. Soc. (N.S.), 9 (1983), 293-310.  doi: 10.1090/S0273-0979-1983-15187-X. [43] K. Watanabe, Planar $p$-elastic curves and related generalized complete elliptic integrals, Kodai Math. J., 37 (2014), 453-474.  doi: 10.2996/kmj/1404393898. [44] H. Yanamoto, On the elastic closed plane curves, Kodai Math. J., 8 (1985), 224-235.  doi: 10.2996/kmj/1138037048.
Critical points of $\mathcal{W}$ in $\mathcal{A}_{l, L}$ are given by Theorem 1.1. According to [41], these curves are called wavelike elasticae
The relation between critical curves and the ratio $l/L$. The number of inflection points (where the sign of the curvature changes) in $(0, l)$ is given by $n\in \mathbb{N}\cup\{0\}$. The curve $\hat{ \gamma}^{\pm}_n$ ($n\in \mathbb{N}$) can be constructed from $\hat{ \gamma}^{\pm}_0$.
For any $n\in \mathbb{N}\cup\{0\}$ the curves $\check{ \gamma}^+_n$ and $\check{ \gamma}^-_n$ has a loop
The red curve is the graph of $2\frac{ \mathrm{E}(p)}{ \mathrm{K}(p)}-1$; $0\leq p \leq p_0$ and $-2\frac{ \mathrm{E}(p)}{ \mathrm{K}(p)}+1$; $p_0< p <1$
 [1] Egil Bae, Xue-Cheng Tai, Wei Zhu. Augmented Lagrangian method for an Euler's elastica based segmentation model that promotes convex contours. Inverse Problems and Imaging, 2017, 11 (1) : 1-23. doi: 10.3934/ipi.2017001 [2] Bastian Gebauer, Nuutti Hyvönen. Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Problems and Imaging, 2008, 2 (3) : 355-372. doi: 10.3934/ipi.2008.2.355 [3] Yu-Feng Sun, Zheng Zeng, Jie Song. Quasilinear iterative method for the boundary value problem of nonlinear fractional differential equation. Numerical Algebra, Control and Optimization, 2020, 10 (2) : 157-164. doi: 10.3934/naco.2019045 [4] Shao-Yuan Huang, Shin-Hwa Wang. On S-shaped bifurcation curves for a two-point boundary value problem arising in a theory of thermal explosion. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 4839-4858. doi: 10.3934/dcds.2015.35.4839 [5] Hideo Ikeda, Koji Kondo, Hisashi Okamoto, Shoji Yotsutani. On the global branches of the solutions to a nonlocal boundary-value problem arising in Oseen's spiral flows. Communications on Pure and Applied Analysis, 2003, 2 (3) : 381-390. doi: 10.3934/cpaa.2003.2.381 [6] Sunghan Kim, Ki-Ahm Lee, Henrik Shahgholian. Homogenization of the boundary value for the Dirichlet problem. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 6843-6864. doi: 10.3934/dcds.2019234 [7] Zhousheng Ruan, Sen Zhang, Sican Xiong. Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method. Evolution Equations and Control Theory, 2018, 7 (4) : 669-682. doi: 10.3934/eect.2018032 [8] Yacheng Liu, Runzhang Xu. Potential well method for initial boundary value problem of the generalized double dispersion equations. Communications on Pure and Applied Analysis, 2008, 7 (1) : 63-81. doi: 10.3934/cpaa.2008.7.63 [9] Vladimir V. Varlamov. On the initial boundary value problem for the damped Boussinesq equation. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 431-444. doi: 10.3934/dcds.1998.4.431 [10] Mauro Garavello. Boundary value problem for a phase transition model. Networks and Heterogeneous Media, 2016, 11 (1) : 89-105. doi: 10.3934/nhm.2016.11.89 [11] Patricio Cerda, Leonelo Iturriaga, Sebastián Lorca, Pedro Ubilla. Positive radial solutions of a nonlinear boundary value problem. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1765-1783. doi: 10.3934/cpaa.2018084 [12] Marta García-Huidobro, Raul Manásevich. A three point boundary value problem containing the operator. Conference Publications, 2003, 2003 (Special) : 313-319. doi: 10.3934/proc.2003.2003.313 [13] Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems and Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121 [14] Aibin Zang. Kato's type theorems for the convergence of Euler-Voigt equations to Euler equations with Drichlet boundary conditions. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 4945-4953. doi: 10.3934/dcds.2019202 [15] Matthias Eller. A remark on Littman's method of boundary controllability. Evolution Equations and Control Theory, 2013, 2 (4) : 621-630. doi: 10.3934/eect.2013.2.621 [16] Panos K. Palamides, Alex P. Palamides. Singular boundary value problems, via Sperner's lemma. Conference Publications, 2007, 2007 (Special) : 814-823. doi: 10.3934/proc.2007.2007.814 [17] Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615-620. doi: 10.3934/proc.2015.0615 [18] Shu Wang, Chundi Liu. Boundary Layer Problem and Quasineutral Limit of Compressible Euler-Poisson System. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2177-2199. doi: 10.3934/cpaa.2017108 [19] David Mumford, Peter W. Michor. On Euler's equation and 'EPDiff'. Journal of Geometric Mechanics, 2013, 5 (3) : 319-344. doi: 10.3934/jgm.2013.5.319 [20] John R. Graef, Lingju Kong, Bo Yang. Positive solutions of a nonlinear higher order boundary-value problem. Conference Publications, 2009, 2009 (Special) : 276-285. doi: 10.3934/proc.2009.2009.276

2021 Impact Factor: 1.588