• Previous Article
    Singular weighted sharp Trudinger-Moser inequalities defined on $ \mathbb{R}^N $ and applications to elliptic nonlinear equations
  • DCDS Home
  • This Issue
  • Next Article
    Eternal solutions for a reaction-diffusion equation with weighted reaction
doi: 10.3934/dcds.2021134
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Generalization of the Winfree model to the high-dimensional sphere and its emergent dynamics

Department of Mathematical Sciences, Seoul National University, Seoul 08826, Republic of Korea

*Corresponding author: Hansol Park

Received  February 2021 Revised  June 2021 Early access September 2021

Fund Project: The work of H. Park is supported by National Research Foundation of Korea (NRF-2020R1A2C3A01003881)

We present a high-dimensional Winfree model in this paper. The Winfree model is a mathematical model for synchronization on the unit circle. We generalize this model compare to the high-dimensional sphere and we call it the Winfree sphere model. We restricted the support of the influence function in the neighborhood of the attraction point to a small diameter to mimic the influence function as the Dirac delta distribution. We can obtain several new conditions of the complete phase-locking states for the identical Winfree sphere model from restricting the support of the influence function. We also prove the complete oscillator death(COD) state from the exponential $ \ell^1 $-stability and the existence of the equilibrium solution.

Citation: Hansol Park. Generalization of the Winfree model to the high-dimensional sphere and its emergent dynamics. Discrete & Continuous Dynamical Systems, doi: 10.3934/dcds.2021134
References:
[1]

J. A. AcebronL. L. BonillaC. J. P. Pérez VicenteF. Ritort and R. Spigler, The kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137-185.   Google Scholar

[2]

D. Aeyels and J. Rogge, Stability of phase locking and existence of frequency in networks of globally coupled oscillators, Prog. Theor. Phys., 112 (2004), 921-941.   Google Scholar

[3]

J. T. Ariaratnam and S. H. Strogatz, Phase diagram for the winfree model of coupled nonlinearoscillators, Phys. Rev. Lett., 86 (2001), 4278-4281.   Google Scholar

[4]

G. AlbiN. BellomoL. FermoS.-Y. HaL. PareschiD. Poyato and J. Soler, Vehicular traffic, crowds, and swarms: From kinetic theory and multiscale methods to applications and research perspectives, Math. Models Methods Appl. Sci., 29 (2019), 1901-2005.  doi: 10.1142/S0218202519500374.  Google Scholar

[5]

I. Aoki, A simulation study on the schooling mechanism in fish, Bulletin of the Japan Society of Scientific Fisheries, 48 (1982), 1081-1088.   Google Scholar

[6]

I. Barb$\check{a}$lat, Syst$\grave{e}$mes d$\acute{e}$quations diff$\acute{e}$rentielles d'oscillations non Lin$\acute{e}$aires, Rev. Math. Pures Appl., 4 (1959), 267-270.   Google Scholar

[7]

M. BalleriniN. CabibboR. CandelierA. CavagnaE. CisbaniI. GiardinaV. LecomteA. OrlandiG. ParisiA. ProcacciniM. Viale and V. Zdravkovic, Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study, Proc. Natl. Acad. Sci. USA, 105 (2008), 1232-1237.   Google Scholar

[8]

F. Dörfler and F. Bullo, Synchronization in complex networks of phase oscillators: A survey, Automatica, 50 (2014), 1539-1564.  doi: 10.1016/j.automatica.2014.04.012.  Google Scholar

[9]

P. DegondA. Frouvelle and J.-G. Liu, Phase transitions, hysteresis, and hyperbolicity for self-organized alignment dynamics, Arch. Ration. Mech. Anal., 216 (2015), 63-115.  doi: 10.1007/s00205-014-0800-7.  Google Scholar

[10]

P. Degond and S. Motsch, Large-scale dynamics of the persistent turing walker model of fish behavior, J. Stat. Phys., 131 (2008), 989-1021.  doi: 10.1007/s10955-008-9529-8.  Google Scholar

[11]

J.-G. Dong and X. Xue, Synchronization analysis of Kuramoto oscillators, Commun. Math. Sci., 11 (2013), 465-480.  doi: 10.4310/CMS.2013.v11.n2.a7.  Google Scholar

[12]

I. M. Gamba and M.-J. Kang, Global weak solutions for Kolmogorov-Vicsek type equations with orientational interactions, Arch. Ration. Mech. Anal., 222 (2016), 317-342.  doi: 10.1007/s00205-016-1002-2.  Google Scholar

[13]

S-.Y. HaJ. Y. Park and S. W. Ryoo, Emergence of phase-locked states for the Winfree model in a large coupling regime, Discrete Contin. Dyn. Syst., 35 (2015), 3417-3436.  doi: 10.3934/dcds.2015.35.3417.  Google Scholar

[14]

S.-Y. Ha, D. Kim, H. Park and S. W. Ryoo, Constants of motions for the finite-dimensional Lohe type models with frustration and applications to emergent dynamics, Phys., 416 (2021), 132781. doi: 10.1016/j.physd.2020.132781.  Google Scholar

[15]

S.-Y. HaD. KoJ. Park and S. W. Ryoo, Emergent dynamics of Winfree oscillators on locally coupled networks, J. Differential Equations, 260 (2016), 4203-4326.  doi: 10.1016/j.jde.2015.11.008.  Google Scholar

[16]

S.-Y. HaD. KoJ. Park and S. W. Ryoo, Emergence of partial locking states from the ensemble of Winfree oscillators, Quart. Appl. Math., 75 (2017), 39-68.  doi: 10.1090/qam/1448.  Google Scholar

[17]

S.-Y. Ha and H. Park, Emergent behaviors of Lohe tensor flocks, J. Stat. Phys., 178 (2020), 1268-1292.  doi: 10.1007/s10955-020-02505-3.  Google Scholar

[18]

S.-Y. Ha and H. Park, From the Lohe tensor model to the Hermitian Lohe sphere model and emergent dynamics, SIAM Journal on Applied Dynamical Systems, 19 (2020), 1312-1342.  doi: 10.1137/19M1288553.  Google Scholar

[19]

S.-Y. HaJ. Park and X. Zhang, A global well-posedness and asymptotic dynamics of the kinetic Winfree equation, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 1317-1344.  doi: 10.3934/dcdsb.2019229.  Google Scholar

[20]

S.-Y. HaM. Kang and B. Moon, Collective behaviors of a Winfree ensemble on an infinite cylinder, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 2749-2779.  doi: 10.3934/dcdsb.2020204.  Google Scholar

[21]

S.-Y. Ha and D. Kim, Robustness and asymptotic stability for the Winfree model on a general network under the effect of time-delay, J. Math. Phys., 59 (2018), 112702.  doi: 10.1063/1.5017063.  Google Scholar

[22]

S.-Y. HaH. W. Kim and S. W. Ryoo, Emergence of phase-locked states for the Kuramoto model in a large coupling regime, Commun. Math. Sci., 14 (2016), 1073-1091.  doi: 10.4310/CMS.2016.v14.n4.a10.  Google Scholar

[23]

V. Jaćimović and A. Crnkić, Low-dimensional dynamics in non-Abelian Kuramoto model on the 3-sphere, Chaos, 28 (2018), 083105.  doi: 10.1063/1.5029485.  Google Scholar

[24]

Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer-Verlag, Berlin, 1984.  Google Scholar

[25]

Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, Lecture Notes in Theoretical Physics, 39 (1975), 420-422.   Google Scholar

[26]

M. A. Lohe, Systems of matrix Riccati equations, linear fractional transformations, partial integrability and synchronization, J. Math. Phys., 60 (2019), 072701.  doi: 10.1063/1.5085248.  Google Scholar

[27]

M. A. Lohe, Quantum synchronization over quantum networks, J. Phys. A: Math. Theor., 43 (2010), 465301.  doi: 10.1088/1751-8113/43/46/465301.  Google Scholar

[28]

M. A. Lohe, Non-abelian Kuramoto model and synchronization, J. Phys. A: Math. Theor., 42 (2009), 395101.  doi: 10.1088/1751-8113/42/39/395101.  Google Scholar

[29]

G. Nardulli, D. Marinazzo, M. Pellicoro and S. Stramaglia, Phase shifts between synchronized oscillators in the Winfree and Kuramoto models, Available at http://www.necsi.edu/events/iccs/openconf/author/papers/708.pdf. Google Scholar

[30]

R. Olfati-Saber, Swarms on sphere: A programmable swarm with synchronous behaviors like oscillator networks, IEEE conference on Decision & Control, 45 (2006), 5060-5066.   Google Scholar

[31]

H. Park, The Watanabe-Strogatz transform and constant of motion functionals for kinetic vector models, preprint. Google Scholar

[32]

D. D. QuinnR. H. Rand and S. Strogatz, Singular unlocking transition in the Winfree model of coupled oscillators, Physical Review E, 75 (2007), 036218.  doi: 10.1103/PhysRevE.75.036218.  Google Scholar

[33]

D. D. Quinn, R. H. Rand and S. Strogatz, Synchronization in the Winfree model of coupled nonlinear interactions, A. ENOC 2005 Conference, Eindhoven, Netherlands, August, (2005), 7–12. Google Scholar

[34]

R. Sknepnek and S. Henkes, Active swarms on a sphere, Physical Review E, 2 (2015), 022306.   Google Scholar

[35]

C. M. Topaz and A. L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math., 65 (2004), 152-174.  doi: 10.1137/S0036139903437424.  Google Scholar

[36]

A. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theoret. Bio., 16 (1967), 15-42.   Google Scholar

show all references

References:
[1]

J. A. AcebronL. L. BonillaC. J. P. Pérez VicenteF. Ritort and R. Spigler, The kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137-185.   Google Scholar

[2]

D. Aeyels and J. Rogge, Stability of phase locking and existence of frequency in networks of globally coupled oscillators, Prog. Theor. Phys., 112 (2004), 921-941.   Google Scholar

[3]

J. T. Ariaratnam and S. H. Strogatz, Phase diagram for the winfree model of coupled nonlinearoscillators, Phys. Rev. Lett., 86 (2001), 4278-4281.   Google Scholar

[4]

G. AlbiN. BellomoL. FermoS.-Y. HaL. PareschiD. Poyato and J. Soler, Vehicular traffic, crowds, and swarms: From kinetic theory and multiscale methods to applications and research perspectives, Math. Models Methods Appl. Sci., 29 (2019), 1901-2005.  doi: 10.1142/S0218202519500374.  Google Scholar

[5]

I. Aoki, A simulation study on the schooling mechanism in fish, Bulletin of the Japan Society of Scientific Fisheries, 48 (1982), 1081-1088.   Google Scholar

[6]

I. Barb$\check{a}$lat, Syst$\grave{e}$mes d$\acute{e}$quations diff$\acute{e}$rentielles d'oscillations non Lin$\acute{e}$aires, Rev. Math. Pures Appl., 4 (1959), 267-270.   Google Scholar

[7]

M. BalleriniN. CabibboR. CandelierA. CavagnaE. CisbaniI. GiardinaV. LecomteA. OrlandiG. ParisiA. ProcacciniM. Viale and V. Zdravkovic, Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study, Proc. Natl. Acad. Sci. USA, 105 (2008), 1232-1237.   Google Scholar

[8]

F. Dörfler and F. Bullo, Synchronization in complex networks of phase oscillators: A survey, Automatica, 50 (2014), 1539-1564.  doi: 10.1016/j.automatica.2014.04.012.  Google Scholar

[9]

P. DegondA. Frouvelle and J.-G. Liu, Phase transitions, hysteresis, and hyperbolicity for self-organized alignment dynamics, Arch. Ration. Mech. Anal., 216 (2015), 63-115.  doi: 10.1007/s00205-014-0800-7.  Google Scholar

[10]

P. Degond and S. Motsch, Large-scale dynamics of the persistent turing walker model of fish behavior, J. Stat. Phys., 131 (2008), 989-1021.  doi: 10.1007/s10955-008-9529-8.  Google Scholar

[11]

J.-G. Dong and X. Xue, Synchronization analysis of Kuramoto oscillators, Commun. Math. Sci., 11 (2013), 465-480.  doi: 10.4310/CMS.2013.v11.n2.a7.  Google Scholar

[12]

I. M. Gamba and M.-J. Kang, Global weak solutions for Kolmogorov-Vicsek type equations with orientational interactions, Arch. Ration. Mech. Anal., 222 (2016), 317-342.  doi: 10.1007/s00205-016-1002-2.  Google Scholar

[13]

S-.Y. HaJ. Y. Park and S. W. Ryoo, Emergence of phase-locked states for the Winfree model in a large coupling regime, Discrete Contin. Dyn. Syst., 35 (2015), 3417-3436.  doi: 10.3934/dcds.2015.35.3417.  Google Scholar

[14]

S.-Y. Ha, D. Kim, H. Park and S. W. Ryoo, Constants of motions for the finite-dimensional Lohe type models with frustration and applications to emergent dynamics, Phys., 416 (2021), 132781. doi: 10.1016/j.physd.2020.132781.  Google Scholar

[15]

S.-Y. HaD. KoJ. Park and S. W. Ryoo, Emergent dynamics of Winfree oscillators on locally coupled networks, J. Differential Equations, 260 (2016), 4203-4326.  doi: 10.1016/j.jde.2015.11.008.  Google Scholar

[16]

S.-Y. HaD. KoJ. Park and S. W. Ryoo, Emergence of partial locking states from the ensemble of Winfree oscillators, Quart. Appl. Math., 75 (2017), 39-68.  doi: 10.1090/qam/1448.  Google Scholar

[17]

S.-Y. Ha and H. Park, Emergent behaviors of Lohe tensor flocks, J. Stat. Phys., 178 (2020), 1268-1292.  doi: 10.1007/s10955-020-02505-3.  Google Scholar

[18]

S.-Y. Ha and H. Park, From the Lohe tensor model to the Hermitian Lohe sphere model and emergent dynamics, SIAM Journal on Applied Dynamical Systems, 19 (2020), 1312-1342.  doi: 10.1137/19M1288553.  Google Scholar

[19]

S.-Y. HaJ. Park and X. Zhang, A global well-posedness and asymptotic dynamics of the kinetic Winfree equation, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 1317-1344.  doi: 10.3934/dcdsb.2019229.  Google Scholar

[20]

S.-Y. HaM. Kang and B. Moon, Collective behaviors of a Winfree ensemble on an infinite cylinder, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 2749-2779.  doi: 10.3934/dcdsb.2020204.  Google Scholar

[21]

S.-Y. Ha and D. Kim, Robustness and asymptotic stability for the Winfree model on a general network under the effect of time-delay, J. Math. Phys., 59 (2018), 112702.  doi: 10.1063/1.5017063.  Google Scholar

[22]

S.-Y. HaH. W. Kim and S. W. Ryoo, Emergence of phase-locked states for the Kuramoto model in a large coupling regime, Commun. Math. Sci., 14 (2016), 1073-1091.  doi: 10.4310/CMS.2016.v14.n4.a10.  Google Scholar

[23]

V. Jaćimović and A. Crnkić, Low-dimensional dynamics in non-Abelian Kuramoto model on the 3-sphere, Chaos, 28 (2018), 083105.  doi: 10.1063/1.5029485.  Google Scholar

[24]

Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer-Verlag, Berlin, 1984.  Google Scholar

[25]

Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, Lecture Notes in Theoretical Physics, 39 (1975), 420-422.   Google Scholar

[26]

M. A. Lohe, Systems of matrix Riccati equations, linear fractional transformations, partial integrability and synchronization, J. Math. Phys., 60 (2019), 072701.  doi: 10.1063/1.5085248.  Google Scholar

[27]

M. A. Lohe, Quantum synchronization over quantum networks, J. Phys. A: Math. Theor., 43 (2010), 465301.  doi: 10.1088/1751-8113/43/46/465301.  Google Scholar

[28]

M. A. Lohe, Non-abelian Kuramoto model and synchronization, J. Phys. A: Math. Theor., 42 (2009), 395101.  doi: 10.1088/1751-8113/42/39/395101.  Google Scholar

[29]

G. Nardulli, D. Marinazzo, M. Pellicoro and S. Stramaglia, Phase shifts between synchronized oscillators in the Winfree and Kuramoto models, Available at http://www.necsi.edu/events/iccs/openconf/author/papers/708.pdf. Google Scholar

[30]

R. Olfati-Saber, Swarms on sphere: A programmable swarm with synchronous behaviors like oscillator networks, IEEE conference on Decision & Control, 45 (2006), 5060-5066.   Google Scholar

[31]

H. Park, The Watanabe-Strogatz transform and constant of motion functionals for kinetic vector models, preprint. Google Scholar

[32]

D. D. QuinnR. H. Rand and S. Strogatz, Singular unlocking transition in the Winfree model of coupled oscillators, Physical Review E, 75 (2007), 036218.  doi: 10.1103/PhysRevE.75.036218.  Google Scholar

[33]

D. D. Quinn, R. H. Rand and S. Strogatz, Synchronization in the Winfree model of coupled nonlinear interactions, A. ENOC 2005 Conference, Eindhoven, Netherlands, August, (2005), 7–12. Google Scholar

[34]

R. Sknepnek and S. Henkes, Active swarms on a sphere, Physical Review E, 2 (2015), 022306.   Google Scholar

[35]

C. M. Topaz and A. L. Bertozzi, Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math., 65 (2004), 152-174.  doi: 10.1137/S0036139903437424.  Google Scholar

[36]

A. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theoret. Bio., 16 (1967), 15-42.   Google Scholar

Figure 1.  Geometric visualization of $\mathcal{D}_{\frac{\pi}{2}-\alpha} $ when $d = 2 $
Figure 2.  Examples of $ \tilde{I} $
Figure 3.  Geometric visualization of $n_e(x_j)$ in Lemma 4.1
Figure 4.  Geometric visualization of the condition for $ \Omega_i$ when $d = 2 $
[1]

Takashi Hara and Gordon Slade. The incipient infinite cluster in high-dimensional percolation. Electronic Research Announcements, 1998, 4: 48-55.

[2]

Wayne B. Hayes, Kenneth R. Jackson, Carmen Young. Rigorous high-dimensional shadowing using containment: The general case. Discrete & Continuous Dynamical Systems, 2006, 14 (2) : 329-342. doi: 10.3934/dcds.2006.14.329

[3]

Johannes Lankeit, Yulan Wang. Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption. Discrete & Continuous Dynamical Systems, 2017, 37 (12) : 6099-6121. doi: 10.3934/dcds.2017262

[4]

Woojoo Shim. On the generic complete synchronization of the discrete Kuramoto model. Kinetic & Related Models, 2020, 13 (5) : 979-1005. doi: 10.3934/krm.2020034

[5]

Yaxian Xu, Ajay Jasra. Particle filters for inference of high-dimensional multivariate stochastic volatility models with cross-leverage effects. Foundations of Data Science, 2019, 1 (1) : 61-85. doi: 10.3934/fods.2019003

[6]

Chao Wang, Zhien Li, Ravi P. Agarwal. Hyers-Ulam-Rassias stability of high-dimensional quaternion impulsive fuzzy dynamic equations on time scales. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021041

[7]

Seung-Yeal Ha, Dohyun Kim, Jaeseung Lee, Se Eun Noh. Emergence of aggregation in the swarm sphere model with adaptive coupling laws. Kinetic & Related Models, 2019, 12 (2) : 411-444. doi: 10.3934/krm.2019018

[8]

Chun-Hsiung Hsia, Chang-Yeol Jung, Bongsuk Kwon. On the global convergence of frequency synchronization for Kuramoto and Winfree oscillators. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3319-3334. doi: 10.3934/dcdsb.2018322

[9]

Seung-Yeal Ha, Doheon Kim, Bora Moon. Interplay of random inputs and adaptive couplings in the Winfree model. Communications on Pure & Applied Analysis, 2021, 20 (11) : 3975-4006. doi: 10.3934/cpaa.2021140

[10]

Dohyun Kim, Jeongho Kim. Aggregation and disaggregation of active particles on the unit sphere with time-dependent frequencies. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021131

[11]

Seung-Yeal Ha, Jinyeong Park, Sang Woo Ryoo. Emergence of phase-locked states for the Winfree model in a large coupling regime. Discrete & Continuous Dynamical Systems, 2015, 35 (8) : 3417-3436. doi: 10.3934/dcds.2015.35.3417

[12]

Seung-Yeal Ha, Myeongju Kang, Bora Moon. Uniform-in-time continuum limit of the lattice Winfree model and emergent dynamics. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021036

[13]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

[14]

Dong Li, Xiaoyi Zhang. On a nonlocal aggregation model with nonlinear diffusion. Discrete & Continuous Dynamical Systems, 2010, 27 (1) : 301-323. doi: 10.3934/dcds.2010.27.301

[15]

Jianbo Wang. Remarks on 5-dimensional complete intersections. Electronic Research Announcements, 2014, 21: 28-40. doi: 10.3934/era.2014.21.28

[16]

Marco Caponigro, Anna Chiara Lai, Benedetto Piccoli. A nonlinear model of opinion formation on the sphere. Discrete & Continuous Dynamical Systems, 2015, 35 (9) : 4241-4268. doi: 10.3934/dcds.2015.35.4241

[17]

Grzegorz Graff, Michał Misiurewicz, Piotr Nowak-Przygodzki. Periodic points of latitudinal maps of the $m$-dimensional sphere. Discrete & Continuous Dynamical Systems, 2016, 36 (11) : 6187-6199. doi: 10.3934/dcds.2016070

[18]

Jifa Jiang, Fensidi Tang. The complete classification on a model of two species competition with an inhibitor. Discrete & Continuous Dynamical Systems, 2008, 20 (3) : 659-672. doi: 10.3934/dcds.2008.20.659

[19]

Shin-Ichiro Ei, Hirofumi Izuhara, Masayasu Mimura. Infinite dimensional relaxation oscillation in aggregation-growth systems. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1859-1887. doi: 10.3934/dcdsb.2012.17.1859

[20]

Seung-Yeal Ha, Myeongju Kang, Hansol Park. Collective behaviors of the Lohe Hermitian sphere model with inertia. Communications on Pure & Applied Analysis, 2021, 20 (7&8) : 2613-2641. doi: 10.3934/cpaa.2021046

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (114)
  • HTML views (127)
  • Cited by (0)

Other articles
by authors

[Back to Top]