
-
Previous Article
Global existence and convergence to steady states for a predator-prey model with both predator- and prey-taxis
- DCDS Home
- This Issue
-
Next Article
Generalization of the Winfree model to the high-dimensional sphere and its emergent dynamics
Stabilization of periodic sweeping processes and asymptotic average velocity for soft locomotors with dry friction
1. | Department of Mathematics "Tullio Levi-Civita", University of Padua, via Trieste 63, 35121 Padova (Italy) |
2. | Institute of Information Theory and Automation, Czech Academy of Sciences, Pod vodárenskou věží 4, CZ-182 08 Praha 8 (Czech Republic) |
3. | Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Av. Libertador Bernardo O'Higgins 611, 2841959 Rancagua (Chile) |
We study the asymptotic stability of periodic solutions for sweeping processes defined by a polyhedron with translationally moving faces. Previous results are improved by obtaining a stronger $ W^{1,2} $ convergence. Then we present an application to a model of crawling locomotion. Our stronger convergence allows us to prove the stabilization of the system to a running-periodic (or derivo-periodic, or relative-periodic) solution and the well-posedness of an average asymptotic velocity depending only on the gait adopted by the crawler. Finally, we discuss some examples of finite-time versus asymptotic-only convergence.
References:
[1] |
J. Andres,
Nonlinear rotations, Nonlinear Analysis: Theory, Methods & Applications, 30 (1997), 495-503.
doi: 10.1016/S0362-546X(96)00208-8. |
[2] |
J. Andres, D. Bednařík and K. Pastor,
On the notion of derivo-periodicity, J. Math. Anal. Appl., 303 (2005), 405-417.
doi: 10.1016/j.jmaa.2004.08.020. |
[3] |
T. H. Cao, G. Colombo, B. S. Mordukhovich and D. Nguyen,
Optimization of fully controlled sweeping processes, J. Differ. Eq., 295 (2021), 138-186.
doi: 10.1016/j.jde.2021.05.042. |
[4] |
G. Colombo and P. Gidoni,
On the optimal control of rate-independent soft crawlers, J. Math. Pures Appl., 146 (2021), 127-157.
doi: 10.1016/j.matpur.2020.11.005. |
[5] |
G. Colombo and L. Thibault, Prox-regular sets and applications, Handbook of Nonconvex Analysis and Applications, (2010), 99–182. |
[6] |
J. Eldering and H. O. Jacobs,
The role of symmetry and dissipation in biolocomotion, SIAM J. Appl. Dyn. Syst., 15 (2016), 24-59.
doi: 10.1137/140970914. |
[7] |
F. Fassò, S. Passarella and M. Zoppello,
Control of locomotion systems and dynamics in relative periodic orbits, J. Geome. Mech., 12 (2020), 395-420.
doi: 10.3934/jgm.2020022. |
[8] |
P. Gidoni,
Rate-independent soft crawlers, Quart. J. Mech. Appl. Math., 71 (2018), 369-409.
doi: 10.1093/qjmam/hby010. |
[9] |
P. Gidoni and A. DeSimone,
Stasis domains and slip surfaces in the locomotion of a bio-inspired two-segment crawler, Meccanica, 52 (2017), 587-601.
doi: 10.1007/s11012-016-0408-0. |
[10] |
P. Gidoni and A. DeSimone,
On the genesis of directional friction through bristle-like mediating elements, ESAIM Control Optim. Calc. Var., 23 (2017), 1023-1046.
doi: 10.1051/cocv/2017030. |
[11] |
P. Gidoni and F. Riva, A vanishing inertia analysis for finite dimensional rate-independent systems with nonautonomous dissipation and an application to soft crawlers, Calc. Var. Partial Differential Equations, 60 (2021), 54pp.
doi: 10.1007/s00526-021-02067-6. |
[12] |
I. Gudoshnikov, O. Makarenkov and D. Rachinskiy, Finite-time stability of polyhedral sweeping processes with application to elastoplastic systems, preprint, arXiv: 2011.07744. |
[13] |
I. Gudoshnikov and O. Makarenkov, Stabilization of the response of cyclically loaded lattice spring models with plasticity, ESAIM Control Optim. Calc. Var., 27 (2021), 43pp.
doi: 10.1051/cocv/2020043. |
[14] |
I. Gudoshnikov, M. Kamenskii, O. Makarenkov and N. Voskovskaia., One-period stability analysis of polygonal sweeping processes with application to an elastoplastic model, Math. Model. Nat. Phenom., 15 (2020), 18pp.
doi: 10.1051/mmnp/2019030. |
[15] |
D. G. E. Hobbelen and M. Wisse, Limit Cycle Walking, Humanoid Robots, Human-like Machines, edited by M. Hackel, I-Tech Education and Publishing, 2007. |
[16] |
S. D. Kelly and R. M. Murray,
Geometric phases and robotic locomotion, Journal of Robotic Systems, 12 (1995), 417-431.
doi: 10.1002/rob.4620120607. |
[17] |
P. Krejčí, Hysteresis, Convexity and Dissipation in Hyperbolic Equations, Gattotoscho, 1996. |
[18] |
P. Krejčí and V. Recupero,
BV solutions of rate independent differential inclusions, Math. Bohem., 139 (2014), 607-619.
doi: 10.21136/MB.2014.144138. |
[19] |
P. Krejčí and A. Vladimirov,
Polyhedral sweeping processes with oblique reflection in the space of regulated functions, Set-Valued Anal., 11 (2003), 91-110.
doi: 10.1023/A:1021980201718. |
[20] |
M. Levi, F. C. Hoppensteadt and W. L. Miranker,
Dynamics of the Josephson junction, Quart. Appl. Math., 36 (1978/79), 167-198.
doi: 10.1090/qam/484023. |
[21] |
O. Makarenkov,
Existence and stability of limit cycles in the model of a planar passive biped walking down a slope, Proc. R. Soc. A., 476 (2020), 20190450.
doi: 10.1098/rspa.2019.0450. |
[22] |
R. Martins,
The attractor of an equation of Tricomi's type, J. Math. Anal. Appl., 342 (2008), 1265-1270.
doi: 10.1016/j.jmaa.2008.01.017. |
[23] |
A. Mielke and F. Theil,
On rate-independent hysteresis models, NoDEA. Nonlinear Differential Equations Appl., 11 (2004), 151-189.
doi: 10.1007/s00030-003-1052-7. |
[24] |
A. Mielke and T. Roubíček, Rate-Independent Systems. Theory and Application, Applied Mathematical Sciences, 193. Springer, New York, 2015. |
[25] |
B. Pollard, V. Fedonyuk and P. Tallapragada,
Swimming on limit cycles with nonholonomic constraints, Nonlinear Dyn., 97 (2019), 2453-2468.
doi: 10.1007/s11071-019-05141-z. |
[26] |
A. A. Tolstonogov,
Polyhedral set-valued maps: Properties and applications, Sibirsk. Mat. Zh., 61 (2020), 428-452.
doi: 10.33048/smzh.2020.61.216. |
show all references
References:
[1] |
J. Andres,
Nonlinear rotations, Nonlinear Analysis: Theory, Methods & Applications, 30 (1997), 495-503.
doi: 10.1016/S0362-546X(96)00208-8. |
[2] |
J. Andres, D. Bednařík and K. Pastor,
On the notion of derivo-periodicity, J. Math. Anal. Appl., 303 (2005), 405-417.
doi: 10.1016/j.jmaa.2004.08.020. |
[3] |
T. H. Cao, G. Colombo, B. S. Mordukhovich and D. Nguyen,
Optimization of fully controlled sweeping processes, J. Differ. Eq., 295 (2021), 138-186.
doi: 10.1016/j.jde.2021.05.042. |
[4] |
G. Colombo and P. Gidoni,
On the optimal control of rate-independent soft crawlers, J. Math. Pures Appl., 146 (2021), 127-157.
doi: 10.1016/j.matpur.2020.11.005. |
[5] |
G. Colombo and L. Thibault, Prox-regular sets and applications, Handbook of Nonconvex Analysis and Applications, (2010), 99–182. |
[6] |
J. Eldering and H. O. Jacobs,
The role of symmetry and dissipation in biolocomotion, SIAM J. Appl. Dyn. Syst., 15 (2016), 24-59.
doi: 10.1137/140970914. |
[7] |
F. Fassò, S. Passarella and M. Zoppello,
Control of locomotion systems and dynamics in relative periodic orbits, J. Geome. Mech., 12 (2020), 395-420.
doi: 10.3934/jgm.2020022. |
[8] |
P. Gidoni,
Rate-independent soft crawlers, Quart. J. Mech. Appl. Math., 71 (2018), 369-409.
doi: 10.1093/qjmam/hby010. |
[9] |
P. Gidoni and A. DeSimone,
Stasis domains and slip surfaces in the locomotion of a bio-inspired two-segment crawler, Meccanica, 52 (2017), 587-601.
doi: 10.1007/s11012-016-0408-0. |
[10] |
P. Gidoni and A. DeSimone,
On the genesis of directional friction through bristle-like mediating elements, ESAIM Control Optim. Calc. Var., 23 (2017), 1023-1046.
doi: 10.1051/cocv/2017030. |
[11] |
P. Gidoni and F. Riva, A vanishing inertia analysis for finite dimensional rate-independent systems with nonautonomous dissipation and an application to soft crawlers, Calc. Var. Partial Differential Equations, 60 (2021), 54pp.
doi: 10.1007/s00526-021-02067-6. |
[12] |
I. Gudoshnikov, O. Makarenkov and D. Rachinskiy, Finite-time stability of polyhedral sweeping processes with application to elastoplastic systems, preprint, arXiv: 2011.07744. |
[13] |
I. Gudoshnikov and O. Makarenkov, Stabilization of the response of cyclically loaded lattice spring models with plasticity, ESAIM Control Optim. Calc. Var., 27 (2021), 43pp.
doi: 10.1051/cocv/2020043. |
[14] |
I. Gudoshnikov, M. Kamenskii, O. Makarenkov and N. Voskovskaia., One-period stability analysis of polygonal sweeping processes with application to an elastoplastic model, Math. Model. Nat. Phenom., 15 (2020), 18pp.
doi: 10.1051/mmnp/2019030. |
[15] |
D. G. E. Hobbelen and M. Wisse, Limit Cycle Walking, Humanoid Robots, Human-like Machines, edited by M. Hackel, I-Tech Education and Publishing, 2007. |
[16] |
S. D. Kelly and R. M. Murray,
Geometric phases and robotic locomotion, Journal of Robotic Systems, 12 (1995), 417-431.
doi: 10.1002/rob.4620120607. |
[17] |
P. Krejčí, Hysteresis, Convexity and Dissipation in Hyperbolic Equations, Gattotoscho, 1996. |
[18] |
P. Krejčí and V. Recupero,
BV solutions of rate independent differential inclusions, Math. Bohem., 139 (2014), 607-619.
doi: 10.21136/MB.2014.144138. |
[19] |
P. Krejčí and A. Vladimirov,
Polyhedral sweeping processes with oblique reflection in the space of regulated functions, Set-Valued Anal., 11 (2003), 91-110.
doi: 10.1023/A:1021980201718. |
[20] |
M. Levi, F. C. Hoppensteadt and W. L. Miranker,
Dynamics of the Josephson junction, Quart. Appl. Math., 36 (1978/79), 167-198.
doi: 10.1090/qam/484023. |
[21] |
O. Makarenkov,
Existence and stability of limit cycles in the model of a planar passive biped walking down a slope, Proc. R. Soc. A., 476 (2020), 20190450.
doi: 10.1098/rspa.2019.0450. |
[22] |
R. Martins,
The attractor of an equation of Tricomi's type, J. Math. Anal. Appl., 342 (2008), 1265-1270.
doi: 10.1016/j.jmaa.2008.01.017. |
[23] |
A. Mielke and F. Theil,
On rate-independent hysteresis models, NoDEA. Nonlinear Differential Equations Appl., 11 (2004), 151-189.
doi: 10.1007/s00030-003-1052-7. |
[24] |
A. Mielke and T. Roubíček, Rate-Independent Systems. Theory and Application, Applied Mathematical Sciences, 193. Springer, New York, 2015. |
[25] |
B. Pollard, V. Fedonyuk and P. Tallapragada,
Swimming on limit cycles with nonholonomic constraints, Nonlinear Dyn., 97 (2019), 2453-2468.
doi: 10.1007/s11071-019-05141-z. |
[26] |
A. A. Tolstonogov,
Polyhedral set-valued maps: Properties and applications, Sibirsk. Mat. Zh., 61 (2020), 428-452.
doi: 10.33048/smzh.2020.61.216. |



[1] |
Francesco Fassò, Simone Passarella, Marta Zoppello. Control of locomotion systems and dynamics in relative periodic orbits. Journal of Geometric Mechanics, 2020, 12 (3) : 395-420. doi: 10.3934/jgm.2020022 |
[2] |
Alexander Tolstonogov. BV solutions of a convex sweeping process with a composed perturbation. Evolution Equations and Control Theory, 2022, 11 (2) : 537-557. doi: 10.3934/eect.2021012 |
[3] |
Qiang Li, Mei Wei. Existence and asymptotic stability of periodic solutions for neutral evolution equations with delay. Evolution Equations and Control Theory, 2020, 9 (3) : 753-772. doi: 10.3934/eect.2020032 |
[4] |
Frédéric Mazenc, Michael Malisoff, Patrick D. Leenheer. On the stability of periodic solutions in the perturbed chemostat. Mathematical Biosciences & Engineering, 2007, 4 (2) : 319-338. doi: 10.3934/mbe.2007.4.319 |
[5] |
Jifeng Chu, Meirong Zhang. Rotation numbers and Lyapunov stability of elliptic periodic solutions. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1071-1094. doi: 10.3934/dcds.2008.21.1071 |
[6] |
Maria Carvalho, Alexander Lohse, Alexandre A. P. Rodrigues. Moduli of stability for heteroclinic cycles of periodic solutions. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6541-6564. doi: 10.3934/dcds.2019284 |
[7] |
Rafael Ortega. Stability and index of periodic solutions of a nonlinear telegraph equation. Communications on Pure and Applied Analysis, 2005, 4 (4) : 823-837. doi: 10.3934/cpaa.2005.4.823 |
[8] |
Jifeng Chu, Zaitao Liang, Fangfang Liao, Shiping Lu. Existence and stability of periodic solutions for relativistic singular equations. Communications on Pure and Applied Analysis, 2017, 16 (2) : 591-609. doi: 10.3934/cpaa.2017029 |
[9] |
Anatoli F. Ivanov, Sergei Trofimchuk. Periodic solutions and their stability of a differential-difference equation. Conference Publications, 2009, 2009 (Special) : 385-393. doi: 10.3934/proc.2009.2009.385 |
[10] |
Carlos García-Azpeitia. Relative periodic solutions of the $ n $-vortex problem on the sphere. Journal of Geometric Mechanics, 2019, 11 (3) : 427-438. doi: 10.3934/jgm.2019021 |
[11] |
Miguel V. S. Frasson, Patricia H. Tacuri. Asymptotic behaviour of solutions to linear neutral delay differential equations with periodic coefficients. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1105-1117. doi: 10.3934/cpaa.2014.13.1105 |
[12] |
Jifeng Chu, Pedro J. Torres, Feng Wang. Radial stability of periodic solutions of the Gylden-Meshcherskii-type problem. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 1921-1932. doi: 10.3934/dcds.2015.35.1921 |
[13] |
Hongbin Chen, Yi Li. Existence, uniqueness, and stability of periodic solutions of an equation of duffing type. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 793-807. doi: 10.3934/dcds.2007.18.793 |
[14] |
Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313 |
[15] |
M.I. Gil’. Existence and stability of periodic solutions of semilinear neutral type systems. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 809-820. doi: 10.3934/dcds.2001.7.809 |
[16] |
Yoshihiro Hamaya. Stability properties and existence of almost periodic solutions of volterra difference equations. Conference Publications, 2009, 2009 (Special) : 315-321. doi: 10.3934/proc.2009.2009.315 |
[17] |
Fabrício Cristófani, Ademir Pastor. Nonlinear stability of periodic-wave solutions for systems of dispersive equations. Communications on Pure and Applied Analysis, 2020, 19 (10) : 5015-5032. doi: 10.3934/cpaa.2020225 |
[18] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[19] |
Guo Lin, Shuxia Pan. Periodic traveling wave solutions of periodic integrodifference systems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3005-3031. doi: 10.3934/dcdsb.2020049 |
[20] |
José Luis Bravo, Manuel Fernández, Antonio Tineo. Periodic solutions of a periodic scalar piecewise ode. Communications on Pure and Applied Analysis, 2007, 6 (1) : 213-228. doi: 10.3934/cpaa.2007.6.213 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]