The classical theorem of Jewett and Krieger gives a strictly ergodic model for any ergodic measure preserving system. An extension of this result for non-ergodic systems was given many years ago by George Hansel. He constructed, for any measure preserving system, a strictly uniform model, i.e. a compact space which admits an upper semicontinuous decomposition into strictly ergodic models of the ergodic components of the measure. In this note we give a new proof of a stronger result by adding the condition of purity, which controls the set of ergodic measures that appear in the strictly uniform model.
Citation: |
[1] |
M. Boyle, Lower entropy factors of sofic systems, Ergodic Theory Dynam. Sys., 3 (1983), 541-557.
doi: 10.1017/S0143385700002133.![]() ![]() ![]() |
[2] |
T. Downarowicz, Faces of simplexes of invariant measures, Israel J. Math., 165 (2008), 189-210.
doi: 10.1007/s11856-008-1009-y.![]() ![]() ![]() |
[3] |
T. Downarowicz and E. Glasner, Isomorphic extensions and applications, Topol. Meth. Nonlin. Analysis, 48 (2016), 321-338.
doi: 10.12775/TMNA.2016.050.![]() ![]() ![]() |
[4] |
T. Downarowicz and B. Weiss, When all points are generic for ergodic measures, Bull. Polish Acad. Sci. Math., 68 (2020), 117-132.
doi: 10.4064/ba210113-15-1.![]() ![]() ![]() |
[5] |
G. Hansel, Strict uniformity in ergodic theory, Math. Z., 135 (1974), 221-248.
doi: 10.1007/BF01215027.![]() ![]() ![]() |
[6] |
B. Hasselblatt, Handbook of dynamical systems, Handbook of Dynamical Systems, Vol. 1A, 239–319, North-Holland, Amsterdam, (2002).
doi: 10.1016/S1874-575X(02)80005-4.![]() ![]() ![]() |
[7] |
R. I. Jewett, The prevalence of uniquely ergodic systems, J. Math. Mech., 19 (1970), 717-729.
![]() ![]() |
[8] |
A. S. Kechris, Classical Descriptive Set Theory, Springer, New York, 1995.
doi: 10.1007/978-1-4612-4190-4.![]() ![]() ![]() |
[9] |
W. Krieger, On unique ergodicity, in Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (1970), Vol. II, Berkeley-Los Angeles: University of California Press, (1972), 327–345.
![]() ![]() |
[10] |
K. Kuratowski, Topology, Vol I, Academic press, New York, San Francisco, London, 1966.
![]() ![]() |
[11] |
E. Lehrer, Topological mixing and uniquely ergodic systems, Israel J. Math., 57 (1987), 239-255.
doi: 10.1007/BF02772176.![]() ![]() ![]() |
An array
An array
Selected
The top figure shows the classification of
The tabbed rectangles