doi: 10.3934/dcds.2021142
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

The nonlocal-interaction equation near attracting manifolds

1. 

IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France

2. 

Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA

* Corresponding author: Dejan Slepčev

Received  June 2021 Revised  July 2021 Early access September 2021

Fund Project: DS is grateful to NSF for support via grant DMS 1814991. DS and FSP are grateful to the Center for Nonlinear Analysis of CMU for its support

We study the approximation of the nonlocal-interaction equation restricted to a compact manifold $ {\mathcal{M}} $ embedded in $ {\mathbb{R}}^d $, and more generally compact sets with positive reach (i.e. prox-regular sets). We show that the equation on $ {\mathcal{M}} $ can be approximated by the classical nonlocal-interaction equation on $ {\mathbb{R}}^d $ by adding an external potential which strongly attracts to $ {\mathcal{M}} $. The proof relies on the Sandier–Serfaty approach [23,24] to the $ \Gamma $-convergence of gradient flows. As a by-product, we recover well-posedness for the nonlocal-interaction equation on $ {\mathcal{M}} $, which was shown [10]. We also provide an another approximation to the interaction equation on $ {\mathcal{M}} $, based on iterating approximately solving an interaction equation on $ {\mathbb{R}}^d $ and projecting to $ {\mathcal{M}} $. We show convergence of this scheme, together with an estimate on the rate of convergence. Finally, we conduct numerical experiments, for both the attractive-potential-based and the projection-based approaches, that highlight the effects of the geometry on the dynamics.

Citation: Francesco S. Patacchini, Dejan Slepčev. The nonlocal-interaction equation near attracting manifolds. Discrete & Continuous Dynamical Systems, doi: 10.3934/dcds.2021142
References:
[1]

H. Ahn, S.-Y. Ha, H. Park and W. Shim, Emergent behaviors of Cucker–Smale flocks on the hyperboloid, J. Math. Phys., 62 (2021), Paper No. 082702, 22 pp. arXiv: 2007.02556. doi: 10.1063/5.0020923.  Google Scholar

[2]

L. Alasio, M. Bruna and J. A. Carrillo, The role of a strong confining potential in a nonlinear Fokker-Planck equation, Nonlinear Analysis, 193 (2020), 111480, 28 pp. doi: 10.1016/j.na.2019.03.003.  Google Scholar

[3]

L. Ambrosio and N. Gigli, A user's guide to optimal transport, in Modelling and Optimisation of Flows on Networks, vol. 2062 of Lecture Notes in Math., Springer, Heidelberg, (2013), 1–155. doi: 10.1007/978-3-642-32160-3_1.  Google Scholar

[4]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008.  Google Scholar

[5]

A. L. BertozziT. Laurent and J. Rosado, $L^p$ theory for the multidimensional aggregation equation, Comm. Pure Appl. Math., 64 (2011), 45-83.  doi: 10.1002/cpa.20334.  Google Scholar

[6]

P. Billingsley, Convergence of Probability Measures, Wiley Series in Probability and Statistics, John Wiley & Sons, Inc, New York, 1999. doi: 10.1002/9780470316962.  Google Scholar

[7]

J. A. CañizoJ. A. Carrillo and J. Rosado, A well-posedness theory in measures for some kinetic models of collective motion, Math. Models Methods Appl. Sci., 21 (2011), 515-539.  doi: 10.1142/S0218202511005131.  Google Scholar

[8]

J. A. Carrillo, Y.-P. Choi and M. Hauray, The derivation of swarming models: Mean-field limit and Wasserstein distances, Collective Dynamics from Bacteria to Crowds, 1–46, CISM Courses and Lect., 553, Springer, Vienna, (2014). doi: 10.1007/978-3-7091-1785-9_1.  Google Scholar

[9]

J. A. CarrilloF. S. PatacchiniP. Sternberg and G. Wolansky, Convergence of a particle method for diffusive gradient flows in one dimension, SIAM J. Math. Anal., 48 (2016), 3708-3741.  doi: 10.1137/16M1077210.  Google Scholar

[10]

J. A. CarrilloD. Slepčev and L. Wu, Nonlocal interaction equations on uniformly prox-regular sets, Discrete Contin. Dyn. Syst., 36 (2016), 1209-1247.  doi: 10.3934/dcds.2016.36.1209.  Google Scholar

[11]

K. Craig and I. Topaloglu, Convergence of regularized nonlocal interaction energies, SIAM J. Math. Anal., 48 (2016), 34-60.  doi: 10.1137/15M1013882.  Google Scholar

[12]

S. Daneri and G. Savaré, Lecture notes on gradient flows and optimal transport, Optimal Transport Theory and Applications, (2014), 100–144. doi: 10.1017/CBO9781107297296.007.  Google Scholar

[13]

R. C. Fetecau, S.-Y. Ha and H. Park, An intrinsic aggregation model on the special orthogonal group $SO(3)$: Well-posedness and collective behaviours, J. Nonlinear Sci., 31 (2021), Paper No. 74, 61 pp. doi: 10.1007/s00332-021-09732-2.  Google Scholar

[14]

R. C. Fetecau, H. Park and F. S. Patacchini, Well-posedness and asymptotic behaviour of an aggregation modelwith intrinsic interactions on sphere and other manifolds, preprint, arXiv: 2004.06951, (2020). Google Scholar

[15]

R. C. Fetecau and B. Zhang, Self-organization on Riemannian manifolds, J. Geom. Mech., 11 (2019), 397-426.  doi: 10.3934/jgm.2019020.  Google Scholar

[16]

N. García TrillosM. GerlachM. Hein and D. Slepčev, Error estimates for spectral convergence of the graph Laplacian on random geometric graphs toward the Laplace-Beltrami operator, Found. Comput. Math., 20 (2020), 827-887.  doi: 10.1007/s10208-019-09436-w.  Google Scholar

[17]

S.-Y. Ha and D. Kim, A second-order particle swarm model on a sphere and emergent dynamics, SIAM J. Appl. Dyn. Syst., 18 (2019), 80-116.  doi: 10.1137/18M1205996.  Google Scholar

[18]

S.-Y. HaD. KimJ. Lee and S. E. Noh, Particle and kinetic models for swarming particles on a sphere and stability properties, J. Stat. Phys., 174 (2019), 622-655.  doi: 10.1007/s10955-018-2169-8.  Google Scholar

[19]

S. Lisini, Nonlinear diffusion equations with variable coefficients as gradient flows in Wasserstein spaces, ESAIM: Control Optim. Calc. Var., 15 (2009), 712-740.  doi: 10.1051/cocv:2008044.  Google Scholar

[20]

P. NiyogiS. Smale and S. Weinberger, Finding the homology of submanifolds with high confidence from random samples, Discrete Comput. Geom., 39 (2008), 419-441.  doi: 10.1007/s00454-008-9053-2.  Google Scholar

[21]

F. S. Patacchini and D. Slepčev, GitHub repository for present paper with open source code, https://github.com/francesco-patacchini/interaction-equation-attracting-manifolds. Google Scholar

[22]

J. Rataj and L. Zajíček, On the structure of sets with positive reach, Math. Nachr., 290 (2017), 1806-1829.  doi: 10.1002/mana.201600237.  Google Scholar

[23]

E. Sandier and S. Serfaty, Gamma-convergence of gradient flows with applications to Ginzburg-Landau, Comm. Pure Appl. Math., 57 (2004), 1627-1672.  doi: 10.1002/cpa.20046.  Google Scholar

[24]

S. Serfaty, Gamma-convergence of gradient flows on Hilbert and metric spaces and applications, Discrete Contin. Dyn. Syst., 31 (2011), 1427-1451.  doi: 10.3934/dcds.2011.31.1427.  Google Scholar

[25]

L. Wu and D. Slepčev, Nonlocal interaction equations in environments with heterogeneities and boundaries, Comm. Partial Differential Equations, 40 (2015), 1241-1281.  doi: 10.1080/03605302.2015.1015033.  Google Scholar

show all references

References:
[1]

H. Ahn, S.-Y. Ha, H. Park and W. Shim, Emergent behaviors of Cucker–Smale flocks on the hyperboloid, J. Math. Phys., 62 (2021), Paper No. 082702, 22 pp. arXiv: 2007.02556. doi: 10.1063/5.0020923.  Google Scholar

[2]

L. Alasio, M. Bruna and J. A. Carrillo, The role of a strong confining potential in a nonlinear Fokker-Planck equation, Nonlinear Analysis, 193 (2020), 111480, 28 pp. doi: 10.1016/j.na.2019.03.003.  Google Scholar

[3]

L. Ambrosio and N. Gigli, A user's guide to optimal transport, in Modelling and Optimisation of Flows on Networks, vol. 2062 of Lecture Notes in Math., Springer, Heidelberg, (2013), 1–155. doi: 10.1007/978-3-642-32160-3_1.  Google Scholar

[4]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008.  Google Scholar

[5]

A. L. BertozziT. Laurent and J. Rosado, $L^p$ theory for the multidimensional aggregation equation, Comm. Pure Appl. Math., 64 (2011), 45-83.  doi: 10.1002/cpa.20334.  Google Scholar

[6]

P. Billingsley, Convergence of Probability Measures, Wiley Series in Probability and Statistics, John Wiley & Sons, Inc, New York, 1999. doi: 10.1002/9780470316962.  Google Scholar

[7]

J. A. CañizoJ. A. Carrillo and J. Rosado, A well-posedness theory in measures for some kinetic models of collective motion, Math. Models Methods Appl. Sci., 21 (2011), 515-539.  doi: 10.1142/S0218202511005131.  Google Scholar

[8]

J. A. Carrillo, Y.-P. Choi and M. Hauray, The derivation of swarming models: Mean-field limit and Wasserstein distances, Collective Dynamics from Bacteria to Crowds, 1–46, CISM Courses and Lect., 553, Springer, Vienna, (2014). doi: 10.1007/978-3-7091-1785-9_1.  Google Scholar

[9]

J. A. CarrilloF. S. PatacchiniP. Sternberg and G. Wolansky, Convergence of a particle method for diffusive gradient flows in one dimension, SIAM J. Math. Anal., 48 (2016), 3708-3741.  doi: 10.1137/16M1077210.  Google Scholar

[10]

J. A. CarrilloD. Slepčev and L. Wu, Nonlocal interaction equations on uniformly prox-regular sets, Discrete Contin. Dyn. Syst., 36 (2016), 1209-1247.  doi: 10.3934/dcds.2016.36.1209.  Google Scholar

[11]

K. Craig and I. Topaloglu, Convergence of regularized nonlocal interaction energies, SIAM J. Math. Anal., 48 (2016), 34-60.  doi: 10.1137/15M1013882.  Google Scholar

[12]

S. Daneri and G. Savaré, Lecture notes on gradient flows and optimal transport, Optimal Transport Theory and Applications, (2014), 100–144. doi: 10.1017/CBO9781107297296.007.  Google Scholar

[13]

R. C. Fetecau, S.-Y. Ha and H. Park, An intrinsic aggregation model on the special orthogonal group $SO(3)$: Well-posedness and collective behaviours, J. Nonlinear Sci., 31 (2021), Paper No. 74, 61 pp. doi: 10.1007/s00332-021-09732-2.  Google Scholar

[14]

R. C. Fetecau, H. Park and F. S. Patacchini, Well-posedness and asymptotic behaviour of an aggregation modelwith intrinsic interactions on sphere and other manifolds, preprint, arXiv: 2004.06951, (2020). Google Scholar

[15]

R. C. Fetecau and B. Zhang, Self-organization on Riemannian manifolds, J. Geom. Mech., 11 (2019), 397-426.  doi: 10.3934/jgm.2019020.  Google Scholar

[16]

N. García TrillosM. GerlachM. Hein and D. Slepčev, Error estimates for spectral convergence of the graph Laplacian on random geometric graphs toward the Laplace-Beltrami operator, Found. Comput. Math., 20 (2020), 827-887.  doi: 10.1007/s10208-019-09436-w.  Google Scholar

[17]

S.-Y. Ha and D. Kim, A second-order particle swarm model on a sphere and emergent dynamics, SIAM J. Appl. Dyn. Syst., 18 (2019), 80-116.  doi: 10.1137/18M1205996.  Google Scholar

[18]

S.-Y. HaD. KimJ. Lee and S. E. Noh, Particle and kinetic models for swarming particles on a sphere and stability properties, J. Stat. Phys., 174 (2019), 622-655.  doi: 10.1007/s10955-018-2169-8.  Google Scholar

[19]

S. Lisini, Nonlinear diffusion equations with variable coefficients as gradient flows in Wasserstein spaces, ESAIM: Control Optim. Calc. Var., 15 (2009), 712-740.  doi: 10.1051/cocv:2008044.  Google Scholar

[20]

P. NiyogiS. Smale and S. Weinberger, Finding the homology of submanifolds with high confidence from random samples, Discrete Comput. Geom., 39 (2008), 419-441.  doi: 10.1007/s00454-008-9053-2.  Google Scholar

[21]

F. S. Patacchini and D. Slepčev, GitHub repository for present paper with open source code, https://github.com/francesco-patacchini/interaction-equation-attracting-manifolds. Google Scholar

[22]

J. Rataj and L. Zajíček, On the structure of sets with positive reach, Math. Nachr., 290 (2017), 1806-1829.  doi: 10.1002/mana.201600237.  Google Scholar

[23]

E. Sandier and S. Serfaty, Gamma-convergence of gradient flows with applications to Ginzburg-Landau, Comm. Pure Appl. Math., 57 (2004), 1627-1672.  doi: 10.1002/cpa.20046.  Google Scholar

[24]

S. Serfaty, Gamma-convergence of gradient flows on Hilbert and metric spaces and applications, Discrete Contin. Dyn. Syst., 31 (2011), 1427-1451.  doi: 10.3934/dcds.2011.31.1427.  Google Scholar

[25]

L. Wu and D. Slepčev, Nonlocal interaction equations in environments with heterogeneities and boundaries, Comm. Partial Differential Equations, 40 (2015), 1241-1281.  doi: 10.1080/03605302.2015.1015033.  Google Scholar

Figure 1.  Construction of $ \mu_{\varepsilon}^n $
Figure 2.  Dynamics of (5) approximated by (27) with domain $ {\mathcal{M}} = [-1,1] \cup \{1.5\} $ for an attractive potential
Figure 3.  Dynamics of (1) approximated by (30) with domain $ {\mathcal{M}} = \overline B(0,1) $ for repulsive potentials with varying length scales
Figure 4.  Dynamics of (1) approximated by (30) with a bean-shaped domain for a repulsive potential
Figure 5.  Dynamics of (1) approximated by (30) with domain the boundary of a bean shape for a repulsive potential
[1]

Aurore Back, Emmanuel Frénod. Geometric two-scale convergence on manifold and applications to the Vlasov equation. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 223-241. doi: 10.3934/dcdss.2015.8.223

[2]

Wenqing Hu, Chris Junchi Li. A convergence analysis of the perturbed compositional gradient flow: Averaging principle and normal deviations. Discrete & Continuous Dynamical Systems, 2018, 38 (10) : 4951-4977. doi: 10.3934/dcds.2018216

[3]

Franz W. Kamber and Peter W. Michor. The flow completion of a manifold with vector field. Electronic Research Announcements, 2000, 6: 95-97.

[4]

Boumediene Abdellaoui, Daniela Giachetti, Ireneo Peral, Magdalena Walias. Elliptic problems with nonlinear terms depending on the gradient and singular on the boundary: Interaction with a Hardy-Leray potential. Discrete & Continuous Dynamical Systems, 2014, 34 (5) : 1747-1774. doi: 10.3934/dcds.2014.34.1747

[5]

Stéphane Brull, Pierre Charrier, Luc Mieussens. Gas-surface interaction and boundary conditions for the Boltzmann equation. Kinetic & Related Models, 2014, 7 (2) : 219-251. doi: 10.3934/krm.2014.7.219

[6]

Hongyu Ye. Positive high energy solution for Kirchhoff equation in $\mathbb{R}^{3}$ with superlinear nonlinearities via Nehari-Pohožaev manifold. Discrete & Continuous Dynamical Systems, 2015, 35 (8) : 3857-3877. doi: 10.3934/dcds.2015.35.3857

[7]

Marek Fila, Kazuhiro Ishige, Tatsuki Kawakami. Convergence to the Poisson kernel for the Laplace equation with a nonlinear dynamical boundary condition. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1285-1301. doi: 10.3934/cpaa.2012.11.1285

[8]

Wen Wang, Dapeng Xie, Hui Zhou. Local Aronson-Bénilan gradient estimates and Harnack inequality for the porous medium equation along Ricci flow. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1957-1974. doi: 10.3934/cpaa.2018093

[9]

Samir Salem. A gradient flow approach of propagation of chaos. Discrete & Continuous Dynamical Systems, 2020, 40 (10) : 5729-5754. doi: 10.3934/dcds.2020243

[10]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[11]

Alberto Boscaggin, Francesca Colasuonno, Benedetta Noris. Positive radial solutions for the Minkowski-curvature equation with Neumann boundary conditions. Discrete & Continuous Dynamical Systems - S, 2020, 13 (7) : 1921-1933. doi: 10.3934/dcdss.2020150

[12]

César Nieto, Mauricio Giraldo, Henry Power. Boundary integral equation approach for stokes slip flow in rotating mixers. Discrete & Continuous Dynamical Systems - B, 2011, 15 (4) : 1019-1044. doi: 10.3934/dcdsb.2011.15.1019

[13]

Belkacem Said-Houari, Flávio A. Falcão Nascimento. Global existence and nonexistence for the viscoelastic wave equation with nonlinear boundary damping-source interaction. Communications on Pure & Applied Analysis, 2013, 12 (1) : 375-403. doi: 10.3934/cpaa.2013.12.375

[14]

Chang-Yeol Jung, Roger Temam. Interaction of boundary layers and corner singularities. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 315-339. doi: 10.3934/dcds.2009.23.315

[15]

Stefan Kindermann. Convergence of the gradient method for ill-posed problems. Inverse Problems & Imaging, 2017, 11 (4) : 703-720. doi: 10.3934/ipi.2017033

[16]

Igor Chueshov, Tamara Fastovska. On interaction of circular cylindrical shells with a Poiseuille type flow. Evolution Equations & Control Theory, 2016, 5 (4) : 605-629. doi: 10.3934/eect.2016021

[17]

Timothy Blass, Rafael De La Llave, Enrico Valdinoci. A comparison principle for a Sobolev gradient semi-flow. Communications on Pure & Applied Analysis, 2011, 10 (1) : 69-91. doi: 10.3934/cpaa.2011.10.69

[18]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[19]

Bertram Düring, Daniel Matthes, Josipa Pina Milišić. A gradient flow scheme for nonlinear fourth order equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 935-959. doi: 10.3934/dcdsb.2010.14.935

[20]

Saikat Mazumdar. Struwe's decomposition for a polyharmonic operator on a compact Riemannian manifold with or without boundary. Communications on Pure & Applied Analysis, 2017, 16 (1) : 311-330. doi: 10.3934/cpaa.2017015

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (99)
  • HTML views (118)
  • Cited by (0)

Other articles
by authors

[Back to Top]