\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The nonlocal-interaction equation near attracting manifolds

  • * Corresponding author: Dejan Slepčev

    * Corresponding author: Dejan Slepčev

DS is grateful to NSF for support via grant DMS 1814991. DS and FSP are grateful to the Center for Nonlinear Analysis of CMU for its support

Abstract Full Text(HTML) Figure(5) Related Papers Cited by
  • We study the approximation of the nonlocal-interaction equation restricted to a compact manifold $ {\mathcal{M}} $ embedded in $ {\mathbb{R}}^d $, and more generally compact sets with positive reach (i.e. prox-regular sets). We show that the equation on $ {\mathcal{M}} $ can be approximated by the classical nonlocal-interaction equation on $ {\mathbb{R}}^d $ by adding an external potential which strongly attracts to $ {\mathcal{M}} $. The proof relies on the Sandier–Serfaty approach [23,24] to the $ \Gamma $-convergence of gradient flows. As a by-product, we recover well-posedness for the nonlocal-interaction equation on $ {\mathcal{M}} $, which was shown [10]. We also provide an another approximation to the interaction equation on $ {\mathcal{M}} $, based on iterating approximately solving an interaction equation on $ {\mathbb{R}}^d $ and projecting to $ {\mathcal{M}} $. We show convergence of this scheme, together with an estimate on the rate of convergence. Finally, we conduct numerical experiments, for both the attractive-potential-based and the projection-based approaches, that highlight the effects of the geometry on the dynamics.

    Mathematics Subject Classification: 35A01, 35A02, 35A15, 35D30, 45K05, 65M12.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Construction of $ \mu_{\varepsilon}^n $

    Figure 2.  Dynamics of (5) approximated by (27) with domain $ {\mathcal{M}} = [-1,1] \cup \{1.5\} $ for an attractive potential

    Figure 3.  Dynamics of (1) approximated by (30) with domain $ {\mathcal{M}} = \overline B(0,1) $ for repulsive potentials with varying length scales

    Figure 4.  Dynamics of (1) approximated by (30) with a bean-shaped domain for a repulsive potential

    Figure 5.  Dynamics of (1) approximated by (30) with domain the boundary of a bean shape for a repulsive potential

  • [1] H. Ahn, S.-Y. Ha, H. Park and W. Shim, Emergent behaviors of Cucker–Smale flocks on the hyperboloid, J. Math. Phys., 62 (2021), Paper No. 082702, 22 pp. arXiv: 2007.02556. doi: 10.1063/5.0020923.
    [2] L. Alasio, M. Bruna and J. A. Carrillo, The role of a strong confining potential in a nonlinear Fokker-Planck equation, Nonlinear Analysis, 193 (2020), 111480, 28 pp. doi: 10.1016/j.na.2019.03.003.
    [3] L. Ambrosio and N. Gigli, A user's guide to optimal transport, in Modelling and Optimisation of Flows on Networks, vol. 2062 of Lecture Notes in Math., Springer, Heidelberg, (2013), 1–155. doi: 10.1007/978-3-642-32160-3_1.
    [4] L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008.
    [5] A. L. BertozziT. Laurent and J. Rosado, $L^p$ theory for the multidimensional aggregation equation, Comm. Pure Appl. Math., 64 (2011), 45-83.  doi: 10.1002/cpa.20334.
    [6] P. Billingsley, Convergence of Probability Measures, Wiley Series in Probability and Statistics, John Wiley & Sons, Inc, New York, 1999. doi: 10.1002/9780470316962.
    [7] J. A. CañizoJ. A. Carrillo and J. Rosado, A well-posedness theory in measures for some kinetic models of collective motion, Math. Models Methods Appl. Sci., 21 (2011), 515-539.  doi: 10.1142/S0218202511005131.
    [8] J. A. Carrillo, Y.-P. Choi and M. Hauray, The derivation of swarming models: Mean-field limit and Wasserstein distances, Collective Dynamics from Bacteria to Crowds, 1–46, CISM Courses and Lect., 553, Springer, Vienna, (2014). doi: 10.1007/978-3-7091-1785-9_1.
    [9] J. A. CarrilloF. S. PatacchiniP. Sternberg and G. Wolansky, Convergence of a particle method for diffusive gradient flows in one dimension, SIAM J. Math. Anal., 48 (2016), 3708-3741.  doi: 10.1137/16M1077210.
    [10] J. A. CarrilloD. Slepčev and L. Wu, Nonlocal interaction equations on uniformly prox-regular sets, Discrete Contin. Dyn. Syst., 36 (2016), 1209-1247.  doi: 10.3934/dcds.2016.36.1209.
    [11] K. Craig and I. Topaloglu, Convergence of regularized nonlocal interaction energies, SIAM J. Math. Anal., 48 (2016), 34-60.  doi: 10.1137/15M1013882.
    [12] S. Daneri and G. Savaré, Lecture notes on gradient flows and optimal transport, Optimal Transport Theory and Applications, (2014), 100–144. doi: 10.1017/CBO9781107297296.007.
    [13] R. C. Fetecau, S.-Y. Ha and H. Park, An intrinsic aggregation model on the special orthogonal group $SO(3)$: Well-posedness and collective behaviours, J. Nonlinear Sci., 31 (2021), Paper No. 74, 61 pp. doi: 10.1007/s00332-021-09732-2.
    [14] R. C. Fetecau, H. Park and F. S. Patacchini, Well-posedness and asymptotic behaviour of an aggregation modelwith intrinsic interactions on sphere and other manifolds, preprint, arXiv: 2004.06951, (2020).
    [15] R. C. Fetecau and B. Zhang, Self-organization on Riemannian manifolds, J. Geom. Mech., 11 (2019), 397-426.  doi: 10.3934/jgm.2019020.
    [16] N. García TrillosM. GerlachM. Hein and D. Slepčev, Error estimates for spectral convergence of the graph Laplacian on random geometric graphs toward the Laplace-Beltrami operator, Found. Comput. Math., 20 (2020), 827-887.  doi: 10.1007/s10208-019-09436-w.
    [17] S.-Y. Ha and D. Kim, A second-order particle swarm model on a sphere and emergent dynamics, SIAM J. Appl. Dyn. Syst., 18 (2019), 80-116.  doi: 10.1137/18M1205996.
    [18] S.-Y. HaD. KimJ. Lee and S. E. Noh, Particle and kinetic models for swarming particles on a sphere and stability properties, J. Stat. Phys., 174 (2019), 622-655.  doi: 10.1007/s10955-018-2169-8.
    [19] S. Lisini, Nonlinear diffusion equations with variable coefficients as gradient flows in Wasserstein spaces, ESAIM: Control Optim. Calc. Var., 15 (2009), 712-740.  doi: 10.1051/cocv:2008044.
    [20] P. NiyogiS. Smale and S. Weinberger, Finding the homology of submanifolds with high confidence from random samples, Discrete Comput. Geom., 39 (2008), 419-441.  doi: 10.1007/s00454-008-9053-2.
    [21] F. S. Patacchini and D. Slepčev, GitHub repository for present paper with open source code, https://github.com/francesco-patacchini/interaction-equation-attracting-manifolds.
    [22] J. Rataj and L. Zajíček, On the structure of sets with positive reach, Math. Nachr., 290 (2017), 1806-1829.  doi: 10.1002/mana.201600237.
    [23] E. Sandier and S. Serfaty, Gamma-convergence of gradient flows with applications to Ginzburg-Landau, Comm. Pure Appl. Math., 57 (2004), 1627-1672.  doi: 10.1002/cpa.20046.
    [24] S. Serfaty, Gamma-convergence of gradient flows on Hilbert and metric spaces and applications, Discrete Contin. Dyn. Syst., 31 (2011), 1427-1451.  doi: 10.3934/dcds.2011.31.1427.
    [25] L. Wu and D. Slepčev, Nonlocal interaction equations in environments with heterogeneities and boundaries, Comm. Partial Differential Equations, 40 (2015), 1241-1281.  doi: 10.1080/03605302.2015.1015033.
  • 加载中

Figures(5)

SHARE

Article Metrics

HTML views(1055) PDF downloads(213) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return