[1]
|
I. Bejenaru, Z. Guo, S. Herr and K. Nakanishi, Well-posedness and scattering for the Zakharov system in four dimensions, Anal. PDE, 8 (2015), 2029-2055.
doi: 10.2140/apde.2015.8.2029.
|
[2]
|
I. Bejenaru and S. Herr, Convolutions of singular measures and applications to the Zakharov system, J. Func. Anal., 261 (2011), 478-506.
doi: 10.1016/j.jfa.2011.03.015.
|
[3]
|
I. Bejenaru, S. Herr, J. Holmer and D. Tataru, On the 2D Zakharov system with $L^2$ initial data, Nonlinearity, 22 (2009), 1063-1089.
doi: 10.1088/0951-7715/22/5/007.
|
[4]
|
I. Bejenaru, S. Herr and D. Tataru, A convolution estimate for two dimensional hypersurfaces, Rev. Mat. Iberoam., 26 (2010), 707-728.
doi: 10.4171/RMI/615.
|
[5]
|
J. Bennett, A. Carbery and J. Wright, A non-linear generalisation of the Loomis-Whitney inequality and applications, Math. Res. Lett., 12 (2005), 443-457.
doi: 10.4310/MRL.2005.v12.n4.a1.
|
[6]
|
H. A. Biagioni and F. Linares, Ill-posedness for the Zakharov system with generalised nonlinearity, Proc. Am. Math. Soc., 131 (2003), 3113-3121.
doi: 10.1090/S0002-9939-03-06898-9.
|
[7]
|
J. Bourgain and J. Colliander, On wellposedness of the Zakharov system, Int. Math. Res. Not., 1996 (1996), 515-546.
doi: 10.1155/S1073792896000359.
|
[8]
|
T. Candy, S. Herr and K. Nakanishi, The Zakharov system in dimension $d\geqslant 4$, preprint, arXiv: 1912.05820, (to appear in Journal of The European Mathematical Society).
|
[9]
|
Z. Chen and S. Wu, Local well-posedness for the Zakharov system in dimension $d = 2, 3$, Commun. Pure Appl. Anal., doi: 10.3934/cpaa.2021161.
|
[10]
|
J. Colliander, J. Holmer and N. Tzirakis, Low regularity global well-posedness for the Zakharov and Klein-Gordon-Schrödinger systems, Trans. Am. Math. Soc., 360 (2008), 4619-4638.
doi: 10.1090/S0002-9947-08-04295-5.
|
[11]
|
L. Domingues and R. Santos, A note on $C^2$ ill-posedness results for the Zakharov system in arbitrary dimension, preprint, arXiv: 1910.06486.
|
[12]
|
J. Ginibre, Y. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal., 151 (1997), 384-436.
doi: 10.1006/jfan.1997.3148.
|
[13]
|
F. Grube, Zur Regularität der Flussabbildung des Zakharov-Systems, Master's thesis, Bielefeld University, 2020.
|
[14]
|
Z. Guo and K. Nakanishi, Small energy scattering for the Zakharov system with radial symmetry, Int. Math. Res. Not. IMRN, 2014 (2014), 2327-2342.
doi: 10.1093/imrn/rns296.
|
[15]
|
J. Holmer, Local ill-posedness for the 1D Zakharov system, Electron. J. Differ. Equ., (2007), 1-22.
|
[16]
|
N. Kishimoto, A remark on norm inflation for nonlinear Schrödinger equations, Commun. Pure Appl. Anal., 18 (2019), 1375-1402.
doi: 10.3934/cpaa.2019067.
|
[17]
|
L. Loomis and H. Whitney, An inequality related to the isoperimetric inequality, Bull. Am. Math. Soc., 55 (2005), 961-962.
doi: 10.1090/S0002-9904-1949-09320-5.
|
[18]
|
L. Molinet and S. Vento, Improvement of the energy method for strongly nonresonant dispersive equations and applications, Anal. PDE, 8 (2015), 1455-1495.
doi: 10.2140/apde.2015.8.1455.
|
[19]
|
T. Ozawa and Y. Tsutsumi, Existence and smoothing effects of solutions for the Zakharov equations, Publ. Res. Inst. Math. Sci., 28 (1992), 329-361.
doi: 10.2977/prims/1195168430.
|
[20]
|
H. Pecher, Global well-posedness below energy space for the 1-dimensional Zakharov system, Int. Math. Res. Not., 2001 (2001), 1027-1056.
doi: 10.1155/S1073792801000496.
|
[21]
|
H. Pecher, An improved local well-posedness result for the one-dimensional Zakharov system, J. Math. Anal. Appl., 342 (2008), 1440-1454.
doi: 10.1016/j.jmaa.2008.01.035.
|
[22]
|
A. Rubel, Eine Normalformreduktion für das Zakharov System, Master's thesis, Bielefeld University, 2016.
|
[23]
|
T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, Volume 106, American Mathematical Society, 2006.
doi: 10.1090/cbms/106.
|
[24]
|
V. E. Zakharov et al., Collapse of Lamgmuir waves, Sov. Phys. JETP, 35) (1972), 908-914.
|