-
Previous Article
Regularity for the 3D evolution Navier-Stokes equations under Navier boundary conditions in some Lipschitz domains
- DCDS Home
- This Issue
-
Next Article
Two species nonlocal diffusion systems with free boundaries
Topological mild mixing of all orders along polynomials
CAS Wu Wen-Tsun Key Laboratory of Mathematics, Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, 230026, China |
A minimal system $ (X,T) $ is topologically mildly mixing if for all non-empty open subsets $ U,V $, $ \{n\in {\mathbb Z}: U\cap T^{-n}V\neq \emptyset\} $ is an IP$ ^* $-set. In this paper we show that if a minimal system is topologically mildly mixing, then it is mild mixing of all orders along polynomials. That is, suppose that $ (X,T) $ is a topologically mildly mixing minimal system, $ d\in {\mathbb N} $, $ p_1(n),\ldots, p_d(n) $ are integral polynomials with no $ p_i $ and no $ p_i-p_j $ constant, $ 1\le i\neq j\le d $. Then for all non-empty open subsets $ U , V_1, \ldots, V_d $, $ \{n\in {\mathbb Z}: U\cap T^{-p_1(n) }V_1\cap T^{-p_2(n)}V_2\cap \ldots \cap T^{-p_d(n) }V_d \neq \emptyset \} $ is an IP$ ^* $-set. We also give the corresponding theorem for systems under abelian group actions.
References:
[1] |
D. Berend and V. Bergelson,
Jointly ergodic measure-preserving transformations, Israel J. Math., 49 (1984), 307-314.
doi: 10.1007/BF02760955. |
[2] |
V. Bergelson,
Weakly mixing PET, Ergodic Theory Dynam. Systems, 7 (1987), 337-349.
doi: 10.1017/S0143385700004090. |
[3] |
V. Bergelson,
Combinatorial and Diophantine applications of ergodic theory, Handbook of Dynamical Systems, 1 (2006), 745-869.
doi: 10.1016/S1874-575X(06)80037-8. |
[4] |
V. Bergelson and A. Leibman,
Polynomial extensions of van der Waerden's and Szemerédi's theorems, J. Amer. Math. Soc., 9 (1996), 725-753.
doi: 10.1090/S0894-0347-96-00194-4. |
[5] |
V. Bergelson and A. Leibman,
Set-polynomials and polynomial extension of the Hales–Jewett theorem, Ann. of Math., 150 (1999), 33-75.
doi: 10.2307/121097. |
[6] |
V. Bergelson, A. Leibman and Y. Son,
Joint ergodicity along generalized linear functions, Ergodic Theory Dynam. Systems, 36 (2016), 2044-2075.
doi: 10.1017/etds.2015.11. |
[7] |
V. Bergelson and R. McCutcheon, An ergodic IP polynomial Szemerédi theorem, Mem. Amer. Math. Soc., 146 (2000), 106pp.
doi: 10.1090/memo/0695. |
[8] |
S. Donoso, A. Koutsogiannis and W. Sun, Seminorms for multiple averages along polynomials and applications to joint ergodicity, J. Anal. Math., arXiv: 1902.10237 |
[9] |
N. Frantzikinakis and B. Kra,
Polynomial averages converge to the product of integrals, Israel J. Math., 148 (2005), 267-276.
doi: 10.1007/BF02775439. |
[10] |
H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, M. B. Porter Lectures. Princeton University Press, Princeton, N. J., 1981. |
[11] |
H. Furstenberg,
IP-systems in Ergodic Theory, Contemp. Math., 26 (1984), 131-148.
doi: 10.1090/conm/026/737395. |
[12] |
H. Furstenberg and Y. Katznelson,
An ergodic Szemerédi theorem for IP-systems and combinatorial theory, J. Anal. Math., 45 (1985), 117-168.
doi: 10.1007/BF02792547. |
[13] |
H. Furstenberg and B. Weiss,
The finite multipliers of infinite ergodic transformations, The Structure of Attractors in Dynamical Systems (Proc. Conf., North Dakota State Univ., Fargo, N.D., 1977), 668 (1978), 127-132.
|
[14] |
H. Furstenberg and B. Weiss,
Topological dynamics and combinatorial number theory, J. Anal. Math., 34 (1978), 61-85.
doi: 10.1007/BF02790008. |
[15] |
E. Glasner,
Topological ergodic decompositions and applications to products of powers of a minimal transformation, J. Anal. Math., 64 (1994), 241-262.
doi: 10.1007/BF03008411. |
[16] |
E. Glasner, W. Huang, S. Shao, B. Weiss and X. Ye, Topological characteristic factors and nilsystems, arXiv: 2006.12385. |
[17] |
E. Glasner and B. Weiss,
On the interplay between measurable and topological dynamics, Handbook of Dynamical Systems, 1 (2006), 597-648.
doi: 10.1016/S1874-575X(06)80035-4. |
[18] |
N. Hindman,
Finite sums from sequences within cells of a partition of ${\mathbb N}$, J. Combinatorial Theory Ser. A, 17 (1974), 1-11.
doi: 10.1016/0097-3165(74)90023-5. |
[19] |
W. Huang, S. Shao and X. Ye,
Topological correspondence of multiple ergodic averages of nilpotent group actions, J. Anal. Math., 138 (2019), 687-715.
doi: 10.1007/s11854-019-0036-4. |
[20] |
W. Huang and X. Ye,
An explicit scattering, non-weakly mixing example and weak disjointness, Nonlinearity, 15 (2002), 849-862.
doi: 10.1088/0951-7715/15/3/320. |
[21] |
W. Huang and X. Ye,
Topological complexity, return times and weak disjointness, Ergodic Theory Dynam. Systems, 24 (2004), 825-846.
doi: 10.1017/S0143385703000543. |
[22] |
D. Kwietniak and P. Oprocha,
On weak mixing, minimality and weak disjointness of all iterates, Ergodic Theory Dynam. Systems, 32 (2012), 1661-1672.
doi: 10.1017/S0143385711000599. |
[23] |
A. Leibman,
Multiple recurrence theorem for nilpotent group actions, Geom. Funct. Anal., 4 (1994), 648-659.
doi: 10.1007/BF01896657. |
[24] |
P. Walters,
Some invariant $\sigma$-algebras for measure preserving transformations, Trans. Amer. Math. Soc., 163 (1972), 357-368.
doi: 10.2307/1995727. |
show all references
References:
[1] |
D. Berend and V. Bergelson,
Jointly ergodic measure-preserving transformations, Israel J. Math., 49 (1984), 307-314.
doi: 10.1007/BF02760955. |
[2] |
V. Bergelson,
Weakly mixing PET, Ergodic Theory Dynam. Systems, 7 (1987), 337-349.
doi: 10.1017/S0143385700004090. |
[3] |
V. Bergelson,
Combinatorial and Diophantine applications of ergodic theory, Handbook of Dynamical Systems, 1 (2006), 745-869.
doi: 10.1016/S1874-575X(06)80037-8. |
[4] |
V. Bergelson and A. Leibman,
Polynomial extensions of van der Waerden's and Szemerédi's theorems, J. Amer. Math. Soc., 9 (1996), 725-753.
doi: 10.1090/S0894-0347-96-00194-4. |
[5] |
V. Bergelson and A. Leibman,
Set-polynomials and polynomial extension of the Hales–Jewett theorem, Ann. of Math., 150 (1999), 33-75.
doi: 10.2307/121097. |
[6] |
V. Bergelson, A. Leibman and Y. Son,
Joint ergodicity along generalized linear functions, Ergodic Theory Dynam. Systems, 36 (2016), 2044-2075.
doi: 10.1017/etds.2015.11. |
[7] |
V. Bergelson and R. McCutcheon, An ergodic IP polynomial Szemerédi theorem, Mem. Amer. Math. Soc., 146 (2000), 106pp.
doi: 10.1090/memo/0695. |
[8] |
S. Donoso, A. Koutsogiannis and W. Sun, Seminorms for multiple averages along polynomials and applications to joint ergodicity, J. Anal. Math., arXiv: 1902.10237 |
[9] |
N. Frantzikinakis and B. Kra,
Polynomial averages converge to the product of integrals, Israel J. Math., 148 (2005), 267-276.
doi: 10.1007/BF02775439. |
[10] |
H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, M. B. Porter Lectures. Princeton University Press, Princeton, N. J., 1981. |
[11] |
H. Furstenberg,
IP-systems in Ergodic Theory, Contemp. Math., 26 (1984), 131-148.
doi: 10.1090/conm/026/737395. |
[12] |
H. Furstenberg and Y. Katznelson,
An ergodic Szemerédi theorem for IP-systems and combinatorial theory, J. Anal. Math., 45 (1985), 117-168.
doi: 10.1007/BF02792547. |
[13] |
H. Furstenberg and B. Weiss,
The finite multipliers of infinite ergodic transformations, The Structure of Attractors in Dynamical Systems (Proc. Conf., North Dakota State Univ., Fargo, N.D., 1977), 668 (1978), 127-132.
|
[14] |
H. Furstenberg and B. Weiss,
Topological dynamics and combinatorial number theory, J. Anal. Math., 34 (1978), 61-85.
doi: 10.1007/BF02790008. |
[15] |
E. Glasner,
Topological ergodic decompositions and applications to products of powers of a minimal transformation, J. Anal. Math., 64 (1994), 241-262.
doi: 10.1007/BF03008411. |
[16] |
E. Glasner, W. Huang, S. Shao, B. Weiss and X. Ye, Topological characteristic factors and nilsystems, arXiv: 2006.12385. |
[17] |
E. Glasner and B. Weiss,
On the interplay between measurable and topological dynamics, Handbook of Dynamical Systems, 1 (2006), 597-648.
doi: 10.1016/S1874-575X(06)80035-4. |
[18] |
N. Hindman,
Finite sums from sequences within cells of a partition of ${\mathbb N}$, J. Combinatorial Theory Ser. A, 17 (1974), 1-11.
doi: 10.1016/0097-3165(74)90023-5. |
[19] |
W. Huang, S. Shao and X. Ye,
Topological correspondence of multiple ergodic averages of nilpotent group actions, J. Anal. Math., 138 (2019), 687-715.
doi: 10.1007/s11854-019-0036-4. |
[20] |
W. Huang and X. Ye,
An explicit scattering, non-weakly mixing example and weak disjointness, Nonlinearity, 15 (2002), 849-862.
doi: 10.1088/0951-7715/15/3/320. |
[21] |
W. Huang and X. Ye,
Topological complexity, return times and weak disjointness, Ergodic Theory Dynam. Systems, 24 (2004), 825-846.
doi: 10.1017/S0143385703000543. |
[22] |
D. Kwietniak and P. Oprocha,
On weak mixing, minimality and weak disjointness of all iterates, Ergodic Theory Dynam. Systems, 32 (2012), 1661-1672.
doi: 10.1017/S0143385711000599. |
[23] |
A. Leibman,
Multiple recurrence theorem for nilpotent group actions, Geom. Funct. Anal., 4 (1994), 648-659.
doi: 10.1007/BF01896657. |
[24] |
P. Walters,
Some invariant $\sigma$-algebras for measure preserving transformations, Trans. Amer. Math. Soc., 163 (1972), 357-368.
doi: 10.2307/1995727. |
[1] |
Krzysztof Frączek, M. Lemańczyk, E. Lesigne. Mild mixing property for special flows under piecewise constant functions. Discrete and Continuous Dynamical Systems, 2007, 19 (4) : 691-710. doi: 10.3934/dcds.2007.19.691 |
[2] |
Krzysztof Frączek, Mariusz Lemańczyk. Ratner's property and mild mixing for special flows over two-dimensional rotations. Journal of Modern Dynamics, 2010, 4 (4) : 609-635. doi: 10.3934/jmd.2010.4.609 |
[3] |
Adam Kanigowski, Davide Ravotti. Polynomial 3-mixing for smooth time-changes of horocycle flows. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5347-5371. doi: 10.3934/dcds.2020230 |
[4] |
Qiao Liu, Shangbin Cui. Regularizing rate estimates for mild solutions of the incompressible Magneto-hydrodynamic system. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1643-1660. doi: 10.3934/cpaa.2012.11.1643 |
[5] |
Paul Deuring. Spatial asymptotics of mild solutions to the time-dependent Oseen system. Communications on Pure and Applied Analysis, 2021, 20 (5) : 1833-1849. doi: 10.3934/cpaa.2021044 |
[6] |
Min Li, Maoan Han. On the number of limit cycles of a quartic polynomial system. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3167-3181. doi: 10.3934/dcdss.2020337 |
[7] |
Youshan Tao, Michael Winkler. A chemotaxis-haptotaxis system with haptoattractant remodeling: Boundedness enforced by mild saturation of signal production. Communications on Pure and Applied Analysis, 2019, 18 (4) : 2047-2067. doi: 10.3934/cpaa.2019092 |
[8] |
Yumi Yahagi. Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1497-1510. doi: 10.3934/dcdsb.2021099 |
[9] |
Krzysztof Frączek, Leonid Polterovich. Growth and mixing. Journal of Modern Dynamics, 2008, 2 (2) : 315-338. doi: 10.3934/jmd.2008.2.315 |
[10] |
Sonja Cox, Arnulf Jentzen, Ryan Kurniawan, Primož Pušnik. On the mild Itô formula in Banach spaces. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2217-2243. doi: 10.3934/dcdsb.2018232 |
[11] |
Reuven Cohen, Mira Gonen, Avishai Wool. Bounding the bias of tree-like sampling in IP topologies. Networks and Heterogeneous Media, 2008, 3 (2) : 323-332. doi: 10.3934/nhm.2008.3.323 |
[12] |
Asaf Katz. On mixing and sparse ergodic theorems. Journal of Modern Dynamics, 2021, 17: 1-32. doi: 10.3934/jmd.2021001 |
[13] |
Qiaoyi Hu, Zhijun Qiao. Analyticity, Gevrey regularity and unique continuation for an integrable multi-component peakon system with an arbitrary polynomial function. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6975-7000. doi: 10.3934/dcds.2016103 |
[14] |
Vladimir Pozdyayev. 2D system analysis via dual problems and polynomial matrix inequalities. Numerical Algebra, Control and Optimization, 2016, 6 (4) : 491-504. doi: 10.3934/naco.2016022 |
[15] |
Jian Li, Yini Yang. On $ n $-tuplewise IP-sensitivity and thick sensitivity. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 2775-2793. doi: 10.3934/dcds.2021211 |
[16] |
Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Local existence with mild regularity for the Boltzmann equation. Kinetic and Related Models, 2013, 6 (4) : 1011-1041. doi: 10.3934/krm.2013.6.1011 |
[17] |
Lidong Wang, Xiang Wang, Fengchun Lei, Heng Liu. Mixing invariant extremal distributional chaos. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6533-6538. doi: 10.3934/dcds.2016082 |
[18] |
A. Crannell. A chaotic, non-mixing subshift. Conference Publications, 1998, 1998 (Special) : 195-202. doi: 10.3934/proc.1998.1998.195 |
[19] |
Zhi Lin, Katarína Boďová, Charles R. Doering. Models & measures of mixing & effective diffusion. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 259-274. doi: 10.3934/dcds.2010.28.259 |
[20] |
Antoni Ferragut, Jaume Llibre, Adam Mahdi. Polynomial inverse integrating factors for polynomial vector fields. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 387-395. doi: 10.3934/dcds.2007.17.387 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]