
-
Previous Article
Eternal solutions for a reaction-diffusion equation with weighted reaction
- DCDS Home
- This Issue
-
Next Article
Lower bounds for Orlicz eigenvalues
On the structure of α-limit sets of backward trajectories for graph maps
1. | AGH University of Science and Technology, Faculty of Applied Mathematics, al. Mickiewicza 30, 30-059 Kraków, Poland |
2. | Mathematical Institute of the Silesian University in Opava, Na Rybníčku 1, 74601, Opava, Czech Republic |
3. | Centre of Excellence IT4Innovations - Institute for Research and Applications of Fuzzy Modeling, University of Ostrava, 30. dubna 22, 701 03 Ostrava 1, Czech Republic |
In the paper we study what sets can be obtained as $ \alpha $-limit sets of backward trajectories in graph maps. We show that in the case of mixing maps, all those $ \alpha $-limit sets are $ \omega $-limit sets and for all but finitely many points $ x $, we can obtain every $ \omega $-limits set as the $ \alpha $-limit set of a backward trajectory starting in $ x $. For zero entropy maps, every $ \alpha $-limit set of a backward trajectory is a minimal set. In the case of maps with positive entropy, we obtain a partial characterization which is very close to complete picture of the possible situations.
References:
[1] |
E. Akin, J. Auslander and K. Berg, When is a transitive map chaotic?, Convergence in Ergodic Theory and Probability, (Columbus, OH, 1993), Ohio State Univ. Math. Res. Inst. Publ., 5, de Gruyter, Berlin, 1996, 25–40. |
[2] |
E. Akin and E. Glasner,
Residual properties and almost equicontinuity, J. Anal. Math., 84 (2001), 243-286.
doi: 10.1007/BF02788112. |
[3] |
J. Auslander and J. A. Yorke,
Interval maps, factors of maps, and chaos, Tohoku Math. J., 32 (1980), 177-188.
doi: 10.2748/tmj/1178229634. |
[4] |
F. Balibrea, G. Dvorníková, M. Lampart and P. Oprocha,
On negative limit sets for one-dimensional dynamics, Nonlinear Anal., 75 (2012), 3262-3267.
doi: 10.1016/j.na.2011.12.030. |
[5] |
A. Barwell, C. Good, R. Knight and B. Raines,
A characterization of $\omega$-limit sets in shift spaces, Ergodic Theory Dynam. Systems, 30 (2010), 21-31.
doi: 10.1017/S0143385708001089. |
[6] |
A. Barwell, C. Good, P. Oprocha and B. Raines,
Characterizations of $\omega$-limit sets in topologically hyperbolic systems, Discrete Contin. Dyn. Syst., 33 (2013), 1819-1833.
doi: 10.3934/dcds.2013.33.1819. |
[7] |
A. M. Blokh,
Dynamical systems on one–dimensional branched manifolds Ⅰ, J. Soviet Math., 48 (1990), 500-508.
doi: 10.1007/BF01095616. |
[8] |
A. M. Blokh,
Dynamical systems on one–dimensional branched manifolds Ⅱ, J. Soviet Math., 48 (1990), 668-674.
doi: 10.1007/BF01094721. |
[9] |
A. M. Blokh,
Dynamical systems on one–dimensional branched manifolds Ⅲ, J. Soviet Math., 49 (1990), 875-883.
doi: 10.1007/BF02205632. |
[10] |
A. Blokh, A. M. Bruckner, P. D. Humke and J. Smítal,
The space of $\omega$-limit sets of a continuous map of the interval, Trans. Amer. Math. Soc., 348 (1996), 1357-1372.
doi: 10.1090/S0002-9947-96-01600-5. |
[11] |
R. Bowen,
$\omega$-limit sets for Axiom A diffeomorphisms, J. Differential Equations, 18 (1975), 333-339.
doi: 10.1016/0022-0396(75)90065-0. |
[12] |
J. Chudziak, J. L. G. Guirao, L. Snoha and V. Špitalský,
Universality with respect to $\omega$-limit sets, Nonlinear Anal., 71 (2009), 1485-1495.
doi: 10.1016/j.na.2008.12.034. |
[13] |
E. Coven and Z. Nitecki,
Non-wandering sets of the powers of maps of the interval, Ergodic Theory Dynam. Systems, 1 (1981), 9-31.
doi: 10.1017/S0143385700001139. |
[14] |
H. Cui and Y. Ding,
The $\alpha$-limit sets of a unimodal map without homtervals, Topology Appl., 157 (2010), 22-28.
doi: 10.1016/j.topol.2009.04.054. |
[15] |
Y. Dowker and F. Frielander,
On limit sets in dynamical systems, Proc. London Math. Soc., 4 (1954), 168-176.
doi: 10.1112/plms/s3-4.1.168. |
[16] |
J. Hantáková and S. Roth,
On backward attractors of interval maps, Nonlinearity, 34 (2021), 7415-7445.
doi: 10.1088/1361-6544/ac23b6. |
[17] |
G. Harańczyk, D. Kwietniak and P. Oprocha,
Topological structure and entropy of mixing graph maps, Ergodic Theory Dynam. Systems, 34 (2014), 1587-1614.
doi: 10.1017/etds.2013.6. |
[18] |
G. Haranczyk, D. Kwietniak and P. Oprocha,
A note on transitivity, sensitivity and chaos for graph maps, J. Difference Equ. Appl., 17 (2011), 1549-1553.
doi: 10.1080/10236191003657253. |
[19] |
M. Hero,
Special $\alpha$-limit points for maps of the interval, Proc. Amer. Math. Soc., 116 (1992), 1015-1022.
doi: 10.2307/2159483. |
[20] |
M. W. Hirsch, H. L. Smith and X. Zhao,
Chain transitivity, attractivity and strong repellors for semidynamical systems, J. Dynam. Differential Equations, 13 (2001), 107-131.
doi: 10.1023/A:1009044515567. |
[21] |
R. Hric and M. Málek,
Omega limit sets and distributional chaos on graphs, Topology Appl., 153 (2006), 2469-2475.
doi: 10.1016/j.topol.2005.09.007. |
[22] |
S. Jackson, B. Mance and S. Roth, A non-Borel special alpha-limit set in the square, Ergodic Theory Dynam. Systems, (2021), 1–11.
doi: 10.1017/etds. 2021.68. |
[23] |
A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511809187. |
[24] |
Z. Kočan, M. Málek and V. Kurková,
On the centre and the set of $\omega$-limit points of continuous maps on dendrites, Topology Appl., 156 (2009), 2923-2931.
doi: 10.1016/j.topol.2009.02.008. |
[25] |
S. Kolyada, M. Misiurewicz and L. Snoha, Special $\alpha$-limit sets, Dynamics: Topology and Numbers, Contemp. Math., Amer. Math. Soc., Providence, RI, 744 (2020), 157–173.
doi: 10.1090/conm/744/14976. |
[26] |
J. H. Mai and S. Shao,
Spaces of $\omega$-limit sets of graph maps, Fund. Math., 196 (2007), 91-100.
doi: 10.4064/fm196-1-2. |
[27] |
J. Mai and S. Shao,
The structure of graph maps without periodic points, Topology Appl., 154 (2007), 2714-2728.
doi: 10.1016/j.topol.2007.05.005. |
[28] |
J. Mai and T. Sun,
Non-wandering points and the depth for graph maps, Sci. China Ser. A Math., 50 (2007), 1818-1824.
doi: 10.1007/s11425-007-0139-8. |
[29] |
J. Mai, T. Sun and G. Zhang,
Recurrent points and non–wandering points of graph maps, J. Math. Anal. Appl., 383 (2011), 553-559.
doi: 10.1016/j.jmaa.2011.05.052. |
[30] |
J. Munkres, Topology, 2$^nd$ edition, Prentice Hall, Inc., Upper Saddle River, NJ, 2000. |
[31] |
A. N. Sharkovsky,
Continuous maps on the set of limit points of an iterated sequence, Ukr. Math. J., 18 (1966), 127-130.
|
[32] |
S. Ruette and L. Snoha,
For graph maps, one scrambled pair implies Li-Yorke chaos, Proc. Amer. Math. Soc., 142 (2014), 2087-2100.
doi: 10.1090/S0002-9939-2014-11937-X. |
[33] |
T. Sun, Y. Tang, G. Su, H. Xi and B. Qin,
Special $\alpha$-limit points and $\gamma$-limit points of a dendrite map, Qual. Theory Dyn. Syst., 17 (2018), 245-257.
doi: 10.1007/s12346-017-0225-4. |
[34] |
T. Sun, H. Xi and H. Liang,
Special $\alpha$-limit points and unilateral $\gamma$ limit points for graph maps, Sci China Math., 54 (2011), 2013-2018.
doi: 10.1007/s11425-011-4254-1. |
show all references
References:
[1] |
E. Akin, J. Auslander and K. Berg, When is a transitive map chaotic?, Convergence in Ergodic Theory and Probability, (Columbus, OH, 1993), Ohio State Univ. Math. Res. Inst. Publ., 5, de Gruyter, Berlin, 1996, 25–40. |
[2] |
E. Akin and E. Glasner,
Residual properties and almost equicontinuity, J. Anal. Math., 84 (2001), 243-286.
doi: 10.1007/BF02788112. |
[3] |
J. Auslander and J. A. Yorke,
Interval maps, factors of maps, and chaos, Tohoku Math. J., 32 (1980), 177-188.
doi: 10.2748/tmj/1178229634. |
[4] |
F. Balibrea, G. Dvorníková, M. Lampart and P. Oprocha,
On negative limit sets for one-dimensional dynamics, Nonlinear Anal., 75 (2012), 3262-3267.
doi: 10.1016/j.na.2011.12.030. |
[5] |
A. Barwell, C. Good, R. Knight and B. Raines,
A characterization of $\omega$-limit sets in shift spaces, Ergodic Theory Dynam. Systems, 30 (2010), 21-31.
doi: 10.1017/S0143385708001089. |
[6] |
A. Barwell, C. Good, P. Oprocha and B. Raines,
Characterizations of $\omega$-limit sets in topologically hyperbolic systems, Discrete Contin. Dyn. Syst., 33 (2013), 1819-1833.
doi: 10.3934/dcds.2013.33.1819. |
[7] |
A. M. Blokh,
Dynamical systems on one–dimensional branched manifolds Ⅰ, J. Soviet Math., 48 (1990), 500-508.
doi: 10.1007/BF01095616. |
[8] |
A. M. Blokh,
Dynamical systems on one–dimensional branched manifolds Ⅱ, J. Soviet Math., 48 (1990), 668-674.
doi: 10.1007/BF01094721. |
[9] |
A. M. Blokh,
Dynamical systems on one–dimensional branched manifolds Ⅲ, J. Soviet Math., 49 (1990), 875-883.
doi: 10.1007/BF02205632. |
[10] |
A. Blokh, A. M. Bruckner, P. D. Humke and J. Smítal,
The space of $\omega$-limit sets of a continuous map of the interval, Trans. Amer. Math. Soc., 348 (1996), 1357-1372.
doi: 10.1090/S0002-9947-96-01600-5. |
[11] |
R. Bowen,
$\omega$-limit sets for Axiom A diffeomorphisms, J. Differential Equations, 18 (1975), 333-339.
doi: 10.1016/0022-0396(75)90065-0. |
[12] |
J. Chudziak, J. L. G. Guirao, L. Snoha and V. Špitalský,
Universality with respect to $\omega$-limit sets, Nonlinear Anal., 71 (2009), 1485-1495.
doi: 10.1016/j.na.2008.12.034. |
[13] |
E. Coven and Z. Nitecki,
Non-wandering sets of the powers of maps of the interval, Ergodic Theory Dynam. Systems, 1 (1981), 9-31.
doi: 10.1017/S0143385700001139. |
[14] |
H. Cui and Y. Ding,
The $\alpha$-limit sets of a unimodal map without homtervals, Topology Appl., 157 (2010), 22-28.
doi: 10.1016/j.topol.2009.04.054. |
[15] |
Y. Dowker and F. Frielander,
On limit sets in dynamical systems, Proc. London Math. Soc., 4 (1954), 168-176.
doi: 10.1112/plms/s3-4.1.168. |
[16] |
J. Hantáková and S. Roth,
On backward attractors of interval maps, Nonlinearity, 34 (2021), 7415-7445.
doi: 10.1088/1361-6544/ac23b6. |
[17] |
G. Harańczyk, D. Kwietniak and P. Oprocha,
Topological structure and entropy of mixing graph maps, Ergodic Theory Dynam. Systems, 34 (2014), 1587-1614.
doi: 10.1017/etds.2013.6. |
[18] |
G. Haranczyk, D. Kwietniak and P. Oprocha,
A note on transitivity, sensitivity and chaos for graph maps, J. Difference Equ. Appl., 17 (2011), 1549-1553.
doi: 10.1080/10236191003657253. |
[19] |
M. Hero,
Special $\alpha$-limit points for maps of the interval, Proc. Amer. Math. Soc., 116 (1992), 1015-1022.
doi: 10.2307/2159483. |
[20] |
M. W. Hirsch, H. L. Smith and X. Zhao,
Chain transitivity, attractivity and strong repellors for semidynamical systems, J. Dynam. Differential Equations, 13 (2001), 107-131.
doi: 10.1023/A:1009044515567. |
[21] |
R. Hric and M. Málek,
Omega limit sets and distributional chaos on graphs, Topology Appl., 153 (2006), 2469-2475.
doi: 10.1016/j.topol.2005.09.007. |
[22] |
S. Jackson, B. Mance and S. Roth, A non-Borel special alpha-limit set in the square, Ergodic Theory Dynam. Systems, (2021), 1–11.
doi: 10.1017/etds. 2021.68. |
[23] |
A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511809187. |
[24] |
Z. Kočan, M. Málek and V. Kurková,
On the centre and the set of $\omega$-limit points of continuous maps on dendrites, Topology Appl., 156 (2009), 2923-2931.
doi: 10.1016/j.topol.2009.02.008. |
[25] |
S. Kolyada, M. Misiurewicz and L. Snoha, Special $\alpha$-limit sets, Dynamics: Topology and Numbers, Contemp. Math., Amer. Math. Soc., Providence, RI, 744 (2020), 157–173.
doi: 10.1090/conm/744/14976. |
[26] |
J. H. Mai and S. Shao,
Spaces of $\omega$-limit sets of graph maps, Fund. Math., 196 (2007), 91-100.
doi: 10.4064/fm196-1-2. |
[27] |
J. Mai and S. Shao,
The structure of graph maps without periodic points, Topology Appl., 154 (2007), 2714-2728.
doi: 10.1016/j.topol.2007.05.005. |
[28] |
J. Mai and T. Sun,
Non-wandering points and the depth for graph maps, Sci. China Ser. A Math., 50 (2007), 1818-1824.
doi: 10.1007/s11425-007-0139-8. |
[29] |
J. Mai, T. Sun and G. Zhang,
Recurrent points and non–wandering points of graph maps, J. Math. Anal. Appl., 383 (2011), 553-559.
doi: 10.1016/j.jmaa.2011.05.052. |
[30] |
J. Munkres, Topology, 2$^nd$ edition, Prentice Hall, Inc., Upper Saddle River, NJ, 2000. |
[31] |
A. N. Sharkovsky,
Continuous maps on the set of limit points of an iterated sequence, Ukr. Math. J., 18 (1966), 127-130.
|
[32] |
S. Ruette and L. Snoha,
For graph maps, one scrambled pair implies Li-Yorke chaos, Proc. Amer. Math. Soc., 142 (2014), 2087-2100.
doi: 10.1090/S0002-9939-2014-11937-X. |
[33] |
T. Sun, Y. Tang, G. Su, H. Xi and B. Qin,
Special $\alpha$-limit points and $\gamma$-limit points of a dendrite map, Qual. Theory Dyn. Syst., 17 (2018), 245-257.
doi: 10.1007/s12346-017-0225-4. |
[34] |
T. Sun, H. Xi and H. Liang,
Special $\alpha$-limit points and unilateral $\gamma$ limit points for graph maps, Sci China Math., 54 (2011), 2013-2018.
doi: 10.1007/s11425-011-4254-1. |


[1] |
Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547 |
[2] |
Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461 |
[3] |
Roberto De Leo, James A. Yorke. The graph of the logistic map is a tower. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5243-5269. doi: 10.3934/dcds.2021075 |
[4] |
José S. Cánovas. Topological sequence entropy of $\omega$–limit sets of interval maps. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 781-786. doi: 10.3934/dcds.2001.7.781 |
[5] |
Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68. |
[6] |
Steven M. Pederson. Non-turning Poincaré map and homoclinic tangencies in interval maps with non-constant topological entropy. Conference Publications, 2001, 2001 (Special) : 295-302. doi: 10.3934/proc.2001.2001.295 |
[7] |
John Kieffer and En-hui Yang. Ergodic behavior of graph entropy. Electronic Research Announcements, 1997, 3: 11-16. |
[8] |
François Blanchard, Wen Huang. Entropy sets, weakly mixing sets and entropy capacity. Discrete and Continuous Dynamical Systems, 2008, 20 (2) : 275-311. doi: 10.3934/dcds.2008.20.275 |
[9] |
Ghassen Askri. Li-Yorke chaos for dendrite maps with zero topological entropy and ω-limit sets. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 2957-2976. doi: 10.3934/dcds.2017127 |
[10] |
Katrin Gelfert. Lower bounds for the topological entropy. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 555-565. doi: 10.3934/dcds.2005.12.555 |
[11] |
Jaume Llibre. Brief survey on the topological entropy. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3363-3374. doi: 10.3934/dcdsb.2015.20.3363 |
[12] |
James W. Cannon, Mark H. Meilstrup, Andreas Zastrow. The period set of a map from the Cantor set to itself. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2667-2679. doi: 10.3934/dcds.2013.33.2667 |
[13] |
Yang Cao, Song Shao. Topological mild mixing of all orders along polynomials. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1163-1184. doi: 10.3934/dcds.2021150 |
[14] |
Christian Wolf. A shift map with a discontinuous entropy function. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 319-329. doi: 10.3934/dcds.2020012 |
[15] |
Rui Kuang, Xiangdong Ye. The return times set and mixing for measure preserving transformations. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 817-827. doi: 10.3934/dcds.2007.18.817 |
[16] |
Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 545-557 . doi: 10.3934/dcds.2011.31.545 |
[17] |
Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325 |
[18] |
Boris Hasselblatt, Zbigniew Nitecki, James Propp. Topological entropy for nonuniformly continuous maps. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 201-213. doi: 10.3934/dcds.2008.22.201 |
[19] |
Michał Misiurewicz. On Bowen's definition of topological entropy. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 827-833. doi: 10.3934/dcds.2004.10.827 |
[20] |
Lluís Alsedà, David Juher, Francesc Mañosas. Forward triplets and topological entropy on trees. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 623-641. doi: 10.3934/dcds.2021131 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]