We prove existence and uniqueness of eternal solutions in self-similar form growing up in time with exponential rate for the weighted reaction-diffusion equation
$ \partial_tu = \Delta u^m+|x|^{\sigma}u^p, $
posed in
$ \sigma = \frac{2(1-p)}{m-1}. $
Existence and uniqueness of some specific solution holds true when
Citation: |
[1] |
P. Daskalopoulos and N. Sesum, Eternal solutions to the Ricci flow on $ \mathbb{R}^2$, Int. Math. Res. Not., 2006 (2006), Art. ID 83610, 20 pp.
doi: 10.1155/IMRN/2006/83610.![]() ![]() ![]() |
[2] |
V. Galaktionov, L. A. Peletier and J. L. Vázquez, Asymptotics of the fast-diffusion equation with critical exponent, SIAM J. Math. Anal., 31 (2000), 1157-1174.
doi: 10.1137/S0036141097328452.![]() ![]() ![]() |
[3] |
B. H. Gilding and R. Kersner, Traveling Waves in Nonlinear Diffusion-Convection Reaction, in Progress in Nonlinear Differential Equations and Their Applications, Birkhauser, 2004.
doi: 10.1007/978-3-0348-7964-4.![]() ![]() ![]() |
[4] |
J. Guckenheimer and Ph. Holmes, Nonlinear Oscillation, Dynamical Systems and Bifurcations of Vector Fields, Applied Mathematical Sciences, vol. 42, Springer-Verlag, New York, 1990.
![]() ![]() |
[5] |
R. G. Iagar and Ph. Laurençot, Eternal solutions to a singular diffusion equation with critical gradient absorption, Nonlinearity, 26 (2013), 3169-3195.
doi: 10.1088/0951-7715/26/12/3169.![]() ![]() ![]() |
[6] |
R. G. Iagar and A. Sánchez, Self-similar blow-up profiles for a reaction-diffusion equation with strong weighted reaction, Adv. Nonl. Studies, 20 (2020), 867-894.
doi: 10.1515/ans-2020-2104.![]() ![]() ![]() |
[7] |
R. G. Iagar and A. Sánchez, Self-similar blow-up profiles for a reaction-diffusion equation with critically strong weighted reaction, J. Dynam. Differential Equations, 31 (2019), 2061-2094.
doi: 10.1007/s10884-018-09727-w.![]() ![]() ![]() |
[8] |
R. Iagar, A. Sánchez and J. L. Vázquez, Radial equivalence for the two basic nonlinear degenerate diffusion equations, J. Math. Pures Appl., 89 (2008), 1-24.
doi: 10.1016/j.matpur.2007.09.002.![]() ![]() ![]() |
[9] |
A. de Pablo and A. Sánchez, Global travelling waves in reaction-convection-diffusion equations, J. Differential Equations, 165 (2000), 377-413.
doi: 10.1006/jdeq.2000.3781.![]() ![]() ![]() |
[10] |
A. de Pablo, Large-time behaviour of solutions of a reaction-diffusion equation, Proc. Roy. Soc. Edinburgh Sect. A, 124 (1994), 389-398.
doi: 10.1017/S0308210500028547.![]() ![]() ![]() |
[11] |
A. de Pablo and J. L. Vázquez, The balance between strong reaction and slow diffusion, Comm. Partial Differential Equations, 15 (1990), 159-183.
doi: 10.1080/03605309908820682.![]() ![]() ![]() |
[12] |
L. Perko, Differential Equations and Dynamical Systems, Third edition, Texts in Applied Mathematics, 7, Springer Verlag, New York, 2001.
doi: 10.1007/978-1-4613-0003-8.![]() ![]() ![]() |
[13] |
J. L. Vázquez, Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Equations of Porous Medium Type, Oxford Univ. Press, Oxford, 2006.
doi: 10.1093/acprof:oso/9780199202973.001.0001.![]() ![]() ![]() |
[14] |
J. L. Vázquez, Asymptotic behaviour of nonlinear parabolic equations. Anomalous exponents, Degenerate Diffusions (Minneapolis, MN, 1991), IMA Vol. Math. Appl., Springer, New York, 47 (1993), 215–228.
doi: 10.1007/978-1-4612-0885-3_15.![]() ![]() ![]() |
The four regions in the phase plane separated by the isoclines
Trajectories in the phase plane for different values of
The regions in the phase plane associated to the system (3.5)