We say that a diffeomorphism $ f $ is super-exponentially divergent if for every $ b>1 $ the lower limit of $ \#\mbox{Per}_n(f)/b^n $ diverges to infinity, where $ \mbox{Per}_n(f) $ is the set of all periodic points of $ f $ with period $ n $. This property is stronger than the usual super-exponential growth of the number of periodic points. We show that for any $ n $-dimensional smooth closed manifold $ M $ where $ n\ge 3 $, there exists a non-empty open subset $ \mathcal{O} $ of $ \mbox{Diff}^1(M) $ such that diffeomorphisms with super-exponentially divergent property form a dense subset of $ \mathcal{O} $ in the $ C^1 $-topology. A relevant result about the growth rate of the lower limit of the number of periodic points for diffeomorphisms in a $ C^r $-residual subset of $ \mbox{Diff}^r(M)\ (1\le r\le \infty) $ is also shown.
Citation: |
[1] |
F. Abdenur, C. Bonatti, S. Crovisier, L. J. Díaz and L. Wen, Periodic points and homoclinic classes, Erg. Th. Dyn. Sys., 27 (2007), 1-22.
doi: 10.1017/S0143385706000538.![]() ![]() ![]() |
[2] |
M. Artin and B. Mazur, On periodic points, Ann. of Math., 81 (1965), 82-99.
doi: 10.2307/1970384.![]() ![]() ![]() |
[3] |
M. Asaoka, K. Shinohara and D. Turaev, Degenerate behavior in non-hyperbolic semi-group actions on the interval: Fast growth of periodic points and universal dynamics, Math. Ann., 368 (2017), 1277-1309.
doi: 10.1007/s00208-016-1468-0.![]() ![]() ![]() |
[4] |
M. Asaoka, K. Shinohara and D. Turaev, Fast growth of the number of periodic points arising from heterodimensional connections, Compos. Math., 157 (2021), 1899-1963.
doi: 10.1112/S0010437X21007405.![]() ![]() ![]() |
[5] |
P. Berger, Generic family displaying robustly a fast growth of the number of periodic points, preprint, arXiv: 1701.02393.
![]() |
[6] |
C. Bonatti and L. J. Díaz, Robust heterodimensional cycles and $C^1$-generic dynamics, J. Inst. Math. Jussieu, 7 (2008), 469-525.
doi: 10.1017/S1474748008000030.![]() ![]() ![]() |
[7] |
C. Bonatti and L. J. Díaz, Fragile cycles, J. Differential Equations, 252 (2012), 4176-4199.
doi: 10.1016/j.jde.2011.12.002.![]() ![]() ![]() |
[8] |
C. Bonatti, L. J. Díaz and T. Fisher, Super-exponential growth of the number of periodic orbits inside homoclinic classes, Discrete Contin. Dyn. Syst., 20 (2008), 589-604.
doi: 10.3934/dcds.2008.20.589.![]() ![]() ![]() |
[9] |
C. Bonatti, L. J. Díaz, E. R. Pujals and J. Rocha, Robustly transitive sets and heterodimensional cycles. Geometric methods in dynamics. I., Astérisque, 286 (2003), 187-222.
![]() ![]() |
[10] |
C. Bonatti, L. J. Díaz and R. Ures, Minimality of strong stable and unstable foliations for partially hyperbolic diffeomorphisms, J. Inst. Math. Jussieu, 1 (2002), 513-541.
doi: 10.1017/S1474748002000142.![]() ![]() ![]() |
[11] |
C. Bonatti, L. J. Díaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity, Springer-Verlag, Berlin, 2005.
![]() ![]() |
[12] |
M. Brin and G. Stuck, Introduction to Dynamical Systems, Cambridge University Press, Cambridge, 2002.
doi: 10.1017/CBO9780511755316.![]() ![]() ![]() |
[13] |
L. J. Díaz and R. Ures, Persistent homoclinic tangencies and the unfolding of cycles, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994), 643-659.
doi: 10.1016/S0294-1449(16)30172-X.![]() ![]() ![]() |
[14] |
L. F. N. França, Partially hyperbolic sets with a dynamically minimal lamination, Discrete Contin. Dyn. Syst., 38 (2018), 2717-2729.
doi: 10.3934/dcds.2018114.![]() ![]() ![]() |
[15] |
J. Franks, Necessary conditions for stability of diffeomorphisms, Tran. Amer. Math. Soc., 158 (1971), 301-308.
doi: 10.1090/S0002-9947-1971-0283812-3.![]() ![]() ![]() |
[16] |
S. Hayashi, Connecting invariant manifolds and the solution of the $C^1$ stability and $\Omega$-stability conjecture for flows, Ann. of Math., 145 (1997), 81-137.
doi: 10.2307/2951824.![]() ![]() ![]() |
[17] |
F. R. Hertz, M. R. Hertz and R. Ures, Some results on the integrability of the center bundle for partially hyperbolic diffeomorphisms, Partially Hyperbolic Dynamics, Laminations, and Teichmüller Flow, 51 (2007), 103-109.
![]() ![]() |
[18] |
M. Hirsch, Differential Topology. Graduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976.
![]() ![]() |
[19] |
V. Kaloshin, An extension of the Artin-Mazur theorem, Ann. Math., 150 (1999), 729-741.
doi: 10.2307/121093.![]() ![]() ![]() |
[20] |
K. Shinohara, An example of $C^1$-generically wild homoclinic classes with index deficiency, Nonlinearity, 24 (2011), 1961-1974.
doi: 10.1088/0951-7715/24/7/003.![]() ![]() ![]() |
An illustration of an SH-simple cycle