-
Previous Article
On $ L^1 $ estimates of solutions of compressible viscoelastic system
- DCDS Home
- This Issue
-
Next Article
Multiplicity of closed Reeb orbits on dynamically convex $ \mathbb{R}P^{2n-1} $ for $ n\geq2 $
Fujita type results for quasilinear parabolic inequalities with nonlocal terms
1. | Dipartimento di Matematica e Informatica, Universitá degli Studi di Perugia, Via Vanvitelli 1, 06123 Perugia, Italy |
2. | School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland, and, Institute of Mathematics Simion Stoilow of the Romanian Academy, 21 Calea Grivitei St., 010702 Bucharest, Romania |
$ \begin{cases} &u_t \pm L_\mathcal A u\geq (K\ast u^p)u^q \quad\mbox{ in } \mathbb R^N \times \mathbb (0,\infty),\, N\geq 1,\\ &u(x,0) = u_0(x)\ge0 \,\, \text{ in } \mathbb R^N,\end{cases} \qquad (P^{\pm}) $ |
$ u_0\in L^1_{loc}({\mathbb R}^N) $ |
$ L_{\mathcal{A}} $ |
$ m $ |
$ m $ |
$ p,\,q>0 $ |
$ K\ast u^p $ |
$ K>0 $ |
$ u^p $ |
$ (P^-) $ |
$ (P^+) $ |
References:
[1] |
A. T. Duong and Q. H. Phan, Optimal Liouville-type theorems for a system of parabolic inequalities, Commun. Contemp. Math., 22 (2020), 1950043, 22 pp.
doi: 10.1142/S0219199719500433. |
[2] |
R. Filippucci and M. Ghergu, Singular solutions for coercive quasilinear elliptic inequalities with nonlocal terms, Nonlinear Anal., 197 (2020), 111857, 22 pp.
doi: 10.1016/j.na.2020.111857. |
[3] |
R. Filippucci and S. Lombardi,
Fujita type results for parabolic inequalities with gradient terms, J. Differential Equations, 268 (2020), 1873-1910.
doi: 10.1016/j.jde.2019.09.026. |
[4] |
H. Fujita,
On the blowing up of solutions to the Cauchy problem for $u_t = \Delta u + u^{1 + \alpha}$, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109-124.
|
[5] |
V. A. Galaktionov and H. A. Levine,
A general approach to Fujita exponents in nonlinear parabolic problems, Nonlinear Anal., 34 (1998), 1005-1027.
doi: 10.1016/S0362-546X(97)00716-5. |
[6] |
M. Ghergu, P. Karageorgis and G. Singh,
Positive solutions for quasilinear elliptic inequalities and systems with nonlocal terms, J. Differential Equations, 268 (2020), 6033-6066.
doi: 10.1016/j.jde.2019.11.013. |
[7] |
M. Ghergu, P. Karageorgis and G. Singh,
Quasilinear elliptic inequalities with Hardy potential and nonlocal terms, Proc. Royal Soc. Edinburgh Sect. A, 151 (2021), 1075-1093.
doi: 10.1017/prm.2020.50. |
[8] |
M. Ghergu, Y. Miyamoto and V. Moroz,
Polyharmonic inequalities with nonlocal terms, J. Differential Equations, 296 (2021), 799-821.
doi: 10.1016/j.jde.2021.06.019. |
[9] |
M. Ghergu and S. D. Taliaferro,
Pointwise bounds and blow-up for Choquard-Pekar inequalities at an isolated singularity, J. Differential Equations, 261 (2016), 189-217.
doi: 10.1016/j.jde.2016.03.004. |
[10] |
D. R. Hartree,
The wave mechanics of an atom with a non-Coulomb central field, Part Ⅰ. Theory and methods, Math. Proc. Cambridge Philosophical Soc., 24 (1928), 89-110.
doi: 10.1017/S0305004100011919. |
[11] |
D. R. Hartree,
The wave mechanics of an atom with a non-Coulomb central field, Part Ⅱ. Some results and discussion, Math. Proc. Cambridge Philosophical Soc., 24 (1928), 111-132.
|
[12] |
D. R. Hartree,
The wave mechanics of an atom with a non-Coulomb central field, Part Ⅲ. Term values and intensities in series in optical spectra, Math. Proc. Cambridge Philosophical Soc., 24 (1928), 426-437.
doi: 10.1017/S0305004100015954. |
[13] |
K. Hayakawa,
On nonexistence of global solutions of some semilinear parabolic differential equations, Proc. Japan. Acad., 49 (1973), 503-505.
|
[14] |
A. G. Kartsatos and V. V. Kurta,
On the critical Fujita exponents for solutions of first-order nonlinear evolution inequalities, J. Math. Anal. Appl., 269 (2002), 73-86.
doi: 10.1016/S0022-247X(02)00005-7. |
[15] |
K. Kobayashi, T. Sirao and H. Tanaka,
On the blowing up problem for semi-linear heat equations, J. Math. Soc. Japan, 29 (1977), 407-424.
doi: 10.2969/jmsj/02930407. |
[16] |
H. A. Levine, G. M. Lieberman and P. Meier,
On critical exponents for some quasilinear parabolic equations, Math. Methods Appl. Sci., (1990), 429-438.
doi: 10.1002/mma.1670120507. |
[17] |
V. Liskevich and I. I. Skrypnik,
Harnack inequality and continuity of solutions to quasi-linear degenerate parabolic equations with coefficients from Kato-type classes, J. Differential Equations, 247 (2009), 2740-2777.
doi: 10.1016/j.jde.2009.08.018. |
[18] |
V. Liskevich, I. I. Skrypnik and Z. Sobol,
Gradient estimates for degenerate quasi-linear parabolic equations, J. London Math. Soc., 84 (2011), 446-474.
doi: 10.1112/jlms/jdr020. |
[19] |
É. Mitidieri and S. I. Pokhozhaev,
Apriori Estimates and blow-up of solutions to nonlinear partial differential equations and inequalities, Proc. Steklov Inst. Math., 234 (2001), 1-362.
|
[20] |
É. Mitidieri and S. I. Pokhozhaev,
Fujita type theorems for quasilinear parabolic inequalities with nonlinear gradient, Doklady Mathematics, 66 (2002), 187-191.
|
[21] |
E. Mitidieri and S. I. Pokhozhaev,
Nonexistence of weak solutions for some degenerate elliptic and parabolic problems on $\mathbb R^n$, J. Evol. Equ., 1 (2001), 189-220.
doi: 10.1007/PL00001368. |
[22] |
V. Moroz and J. Van Schaftingen,
A guide to the Choquard equation, J. Fixed Point Theory Appl., 19 (2017), 773-813.
doi: 10.1007/s11784-016-0373-1. |
[23] |
S. Pekar, Untersuchung über die Elektronentheorie der Kristalle, Akademie Verlag, Berlin, 1954. |
[24] |
P. Quittner and P. Souplet, Superlinear Parabolic Problems. Blow-Up, Global Existence and Steady States, Birkhauser Advanced Texts, 2007. |
[25] |
A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov and A. P. Mikhailov, Blow-Up in Problems for Quasilinear Parabolic Equations, Walter de Gruyter, Berlin, 1995.
doi: 10.1515/9783110889864.535. |
[26] |
C. Zhang, Estimates for parabolic equations with measure data in generalized Morrey spaces, Commun. Contemp. Math., 21 (2019), 1850044, 21 pp.
doi: 10.1142/S021919971850044X. |
[27] |
Y. Zheng and Z. Bo Fang, New critical exponents, large time behavior, and life span for a fast diffusive $p$-Laplacian equation with nonlocal source, Z. Angew. Math. Phys., 70 (2019), Paper No. 144, 17 pp.
doi: 10.1007/s00033-019-1191-2. |
[28] |
J. Zhou,
Fujita exponent for an inhomogeneous pseudo parabolic equation, Rocky Mountain J. Math., 50 (2020), 1125-1137.
doi: 10.1216/rmj.2020.50.1125. |
show all references
References:
[1] |
A. T. Duong and Q. H. Phan, Optimal Liouville-type theorems for a system of parabolic inequalities, Commun. Contemp. Math., 22 (2020), 1950043, 22 pp.
doi: 10.1142/S0219199719500433. |
[2] |
R. Filippucci and M. Ghergu, Singular solutions for coercive quasilinear elliptic inequalities with nonlocal terms, Nonlinear Anal., 197 (2020), 111857, 22 pp.
doi: 10.1016/j.na.2020.111857. |
[3] |
R. Filippucci and S. Lombardi,
Fujita type results for parabolic inequalities with gradient terms, J. Differential Equations, 268 (2020), 1873-1910.
doi: 10.1016/j.jde.2019.09.026. |
[4] |
H. Fujita,
On the blowing up of solutions to the Cauchy problem for $u_t = \Delta u + u^{1 + \alpha}$, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109-124.
|
[5] |
V. A. Galaktionov and H. A. Levine,
A general approach to Fujita exponents in nonlinear parabolic problems, Nonlinear Anal., 34 (1998), 1005-1027.
doi: 10.1016/S0362-546X(97)00716-5. |
[6] |
M. Ghergu, P. Karageorgis and G. Singh,
Positive solutions for quasilinear elliptic inequalities and systems with nonlocal terms, J. Differential Equations, 268 (2020), 6033-6066.
doi: 10.1016/j.jde.2019.11.013. |
[7] |
M. Ghergu, P. Karageorgis and G. Singh,
Quasilinear elliptic inequalities with Hardy potential and nonlocal terms, Proc. Royal Soc. Edinburgh Sect. A, 151 (2021), 1075-1093.
doi: 10.1017/prm.2020.50. |
[8] |
M. Ghergu, Y. Miyamoto and V. Moroz,
Polyharmonic inequalities with nonlocal terms, J. Differential Equations, 296 (2021), 799-821.
doi: 10.1016/j.jde.2021.06.019. |
[9] |
M. Ghergu and S. D. Taliaferro,
Pointwise bounds and blow-up for Choquard-Pekar inequalities at an isolated singularity, J. Differential Equations, 261 (2016), 189-217.
doi: 10.1016/j.jde.2016.03.004. |
[10] |
D. R. Hartree,
The wave mechanics of an atom with a non-Coulomb central field, Part Ⅰ. Theory and methods, Math. Proc. Cambridge Philosophical Soc., 24 (1928), 89-110.
doi: 10.1017/S0305004100011919. |
[11] |
D. R. Hartree,
The wave mechanics of an atom with a non-Coulomb central field, Part Ⅱ. Some results and discussion, Math. Proc. Cambridge Philosophical Soc., 24 (1928), 111-132.
|
[12] |
D. R. Hartree,
The wave mechanics of an atom with a non-Coulomb central field, Part Ⅲ. Term values and intensities in series in optical spectra, Math. Proc. Cambridge Philosophical Soc., 24 (1928), 426-437.
doi: 10.1017/S0305004100015954. |
[13] |
K. Hayakawa,
On nonexistence of global solutions of some semilinear parabolic differential equations, Proc. Japan. Acad., 49 (1973), 503-505.
|
[14] |
A. G. Kartsatos and V. V. Kurta,
On the critical Fujita exponents for solutions of first-order nonlinear evolution inequalities, J. Math. Anal. Appl., 269 (2002), 73-86.
doi: 10.1016/S0022-247X(02)00005-7. |
[15] |
K. Kobayashi, T. Sirao and H. Tanaka,
On the blowing up problem for semi-linear heat equations, J. Math. Soc. Japan, 29 (1977), 407-424.
doi: 10.2969/jmsj/02930407. |
[16] |
H. A. Levine, G. M. Lieberman and P. Meier,
On critical exponents for some quasilinear parabolic equations, Math. Methods Appl. Sci., (1990), 429-438.
doi: 10.1002/mma.1670120507. |
[17] |
V. Liskevich and I. I. Skrypnik,
Harnack inequality and continuity of solutions to quasi-linear degenerate parabolic equations with coefficients from Kato-type classes, J. Differential Equations, 247 (2009), 2740-2777.
doi: 10.1016/j.jde.2009.08.018. |
[18] |
V. Liskevich, I. I. Skrypnik and Z. Sobol,
Gradient estimates for degenerate quasi-linear parabolic equations, J. London Math. Soc., 84 (2011), 446-474.
doi: 10.1112/jlms/jdr020. |
[19] |
É. Mitidieri and S. I. Pokhozhaev,
Apriori Estimates and blow-up of solutions to nonlinear partial differential equations and inequalities, Proc. Steklov Inst. Math., 234 (2001), 1-362.
|
[20] |
É. Mitidieri and S. I. Pokhozhaev,
Fujita type theorems for quasilinear parabolic inequalities with nonlinear gradient, Doklady Mathematics, 66 (2002), 187-191.
|
[21] |
E. Mitidieri and S. I. Pokhozhaev,
Nonexistence of weak solutions for some degenerate elliptic and parabolic problems on $\mathbb R^n$, J. Evol. Equ., 1 (2001), 189-220.
doi: 10.1007/PL00001368. |
[22] |
V. Moroz and J. Van Schaftingen,
A guide to the Choquard equation, J. Fixed Point Theory Appl., 19 (2017), 773-813.
doi: 10.1007/s11784-016-0373-1. |
[23] |
S. Pekar, Untersuchung über die Elektronentheorie der Kristalle, Akademie Verlag, Berlin, 1954. |
[24] |
P. Quittner and P. Souplet, Superlinear Parabolic Problems. Blow-Up, Global Existence and Steady States, Birkhauser Advanced Texts, 2007. |
[25] |
A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov and A. P. Mikhailov, Blow-Up in Problems for Quasilinear Parabolic Equations, Walter de Gruyter, Berlin, 1995.
doi: 10.1515/9783110889864.535. |
[26] |
C. Zhang, Estimates for parabolic equations with measure data in generalized Morrey spaces, Commun. Contemp. Math., 21 (2019), 1850044, 21 pp.
doi: 10.1142/S021919971850044X. |
[27] |
Y. Zheng and Z. Bo Fang, New critical exponents, large time behavior, and life span for a fast diffusive $p$-Laplacian equation with nonlocal source, Z. Angew. Math. Phys., 70 (2019), Paper No. 144, 17 pp.
doi: 10.1007/s00033-019-1191-2. |
[28] |
J. Zhou,
Fujita exponent for an inhomogeneous pseudo parabolic equation, Rocky Mountain J. Math., 50 (2020), 1125-1137.
doi: 10.1216/rmj.2020.50.1125. |
[1] |
Lingwei Ma, Zhong Bo Fang. A new second critical exponent and life span for a quasilinear degenerate parabolic equation with weighted nonlocal sources. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1697-1706. doi: 10.3934/cpaa.2017081 |
[2] |
Prashanta Garain, Tuhina Mukherjee. Quasilinear nonlocal elliptic problems with variable singular exponent. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5059-5075. doi: 10.3934/cpaa.2020226 |
[3] |
Hui-Ling Li, Heng-Ling Wang, Xiao-Liu Wang. A quasilinear parabolic problem with a source term and a nonlocal absorption. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1945-1956. doi: 10.3934/cpaa.2018092 |
[4] |
Gary Lieberman. Nonlocal problems for quasilinear parabolic equations in divergence form. Conference Publications, 2003, 2003 (Special) : 563-570. doi: 10.3934/proc.2003.2003.563 |
[5] |
Shaohua Chen. Boundedness and blowup solutions for quasilinear parabolic systems with lower order terms. Communications on Pure and Applied Analysis, 2009, 8 (2) : 587-600. doi: 10.3934/cpaa.2009.8.587 |
[6] |
Jorge Ferreira, Hermenegildo Borges de Oliveira. Parabolic reaction-diffusion systems with nonlocal coupled diffusivity terms. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2431-2453. doi: 10.3934/dcds.2017105 |
[7] |
Genni Fragnelli, Paolo Nistri, Duccio Papini. Corrigendum: Nnon-trivial non-negative periodic solutions of a system of doubly degenerate parabolic equations with nonlocal terms. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3831-3834. doi: 10.3934/dcds.2013.33.3831 |
[8] |
Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174 |
[9] |
Rui Huang, Yifu Wang, Yuanyuan Ke. Existence of non-trivial nonnegative periodic solutions for a class of degenerate parabolic equations with nonlocal terms. Discrete and Continuous Dynamical Systems - B, 2005, 5 (4) : 1005-1014. doi: 10.3934/dcdsb.2005.5.1005 |
[10] |
Andrey B. Muravnik. On the Cauchy problem for differential-difference parabolic equations with high-order nonlocal terms of general kind. Discrete and Continuous Dynamical Systems, 2006, 16 (3) : 541-561. doi: 10.3934/dcds.2006.16.541 |
[11] |
Genni Fragnelli, Paolo Nistri, Duccio Papini. Non-trivial non-negative periodic solutions of a system of doubly degenerate parabolic equations with nonlocal terms. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 35-64. doi: 10.3934/dcds.2011.31.35 |
[12] |
Zhiqing Liu, Zhong Bo Fang. Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3619-3635. doi: 10.3934/dcdsb.2016113 |
[13] |
Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253 |
[14] |
Angelo Alvino, Roberta Volpicelli, Bruno Volzone. A remark on Hardy type inequalities with remainder terms. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 801-807. doi: 10.3934/dcdss.2011.4.801 |
[15] |
Roberta Filippucci, Chiara Lini. Existence of solutions for quasilinear Dirichlet problems with gradient terms. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 267-286. doi: 10.3934/dcdss.2019019 |
[16] |
Leszek Gasiński. Existence results for quasilinear hemivariational inequalities at resonance. Conference Publications, 2007, 2007 (Special) : 409-418. doi: 10.3934/proc.2007.2007.409 |
[17] |
Siegfried Carl. Comparison results for a class of quasilinear evolutionary hemivariational inequalities. Conference Publications, 2007, 2007 (Special) : 221-229. doi: 10.3934/proc.2007.2007.221 |
[18] |
Wolfgang Walter. Nonlinear parabolic differential equations and inequalities. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 451-468. doi: 10.3934/dcds.2002.8.451 |
[19] |
Jean Dolbeault, An Zhang. Parabolic methods for ultraspherical interpolation inequalities. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022080 |
[20] |
Janusz Mierczyński, Wenxian Shen. Formulas for generalized principal Lyapunov exponent for parabolic PDEs. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1189-1199. doi: 10.3934/dcdss.2016048 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]