• Previous Article
    Existence of minimizers for one-dimensional vectorial non-semicontinuous functionals with second order lagrangian
  • DCDS Home
  • This Issue
  • Next Article
    Global propagation of singularities for discounted Hamilton-Jacobi equations
April  2022, 42(4): 1971-2003. doi: 10.3934/dcds.2021180

High and low perturbations of Choquard equations with critical reaction and variable growth

1. 

School of Mathematics and Statistics, HNP-LAMA, Central South University, Changsha, Hunan 410083, China

2. 

Department of Mathematics, University of Craiova, 200585 Craiova, Romania

3. 

Faculty of Applied Mathematics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland

*Corresponding author: Vicenţiu D. Rădulescu

Received  June 2021 Published  April 2022 Early access  November 2021

We are concerned with the existence of ground state solutions to the nonhomogeneous perturbed Choquard equation
$ - \Delta_{p(x)} u + V(x)|u|^{p(x) - 2} u $
$ = \left( \int_{\mathbb R^N} r(y)^{-1}|u(y)|^{r(y)}|x-y|^{-\lambda(x,y)} dy\right) |u|^{r(x)-2} u+g(x,u)\ \mbox{in}\ \mathbb R^N, $
where the exponent
$ r(\cdot) $
is critical with respect to the Hardy-Littlewood-Sobolev inequality for variable exponents. We first consider the case where the perturbation
$ g(\cdot ,\cdot) $
is subcritical and we distinguish between the superlinear and sublinear cases. In both situations we establish the existence of solutions and we prove the asymptotic behavior of low-energy solutions in the case of high perturbations. Next, we study the case where the nonlinearity
$ g(\cdot ,\cdot) $
is critical. We prove the existence of solutions both for low and high perturbations and we establish asymptotic properties of low-energy solutions.
Citation: Youpei Zhang, Xianhua Tang, Vicenţiu D. Rădulescu. High and low perturbations of Choquard equations with critical reaction and variable growth. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 1971-2003. doi: 10.3934/dcds.2021180
References:
[1]

C. O. Alves, Existence of radial solutions for a class of $p(x)$-Laplacian equations with critical growth, Differential Integral Equations, 23 (2010), 113-123. 

[2]

C. O. Alves and L. S. Tavares, A Hardy-Littlewood-Sobolev-type inequality for variable exponents and applications to quasilinear Choquard equations involving variable exponent, Mediterr. J. Math., 16 (2019), Paper No. 55, 27 pp. doi: 10.1007/s00009-019-1316-z.

[3]

V. I. Bogachev, Measure Theory, volume I, Springer-Verlag, Berlin, Heidelberg, 2007. doi: 10.1007/978-3-540-34514-5.

[4]

S. ChenA. FiscellaP. Pucci and X. Tang, Semiclassical ground state solutions for critical Schrödinger-Poisson systems with lower perturbations, J. Differential Equations, 268 (2020), 2672-2716.  doi: 10.1016/j.jde.2019.09.041.

[5]

S. Chen and X. Tang, On the planar Schrödinger-Poisson system with the axially symmetric potential, J. Differential Equations, 268 (2020), 945-976.  doi: 10.1016/j.jde.2019.08.036.

[6]

M. Clapp and D. Salazar, Positive and sign-changing solutions to a nonlinear Choquard equation, J. Math. Anal. Appl., 407 (2013), 1-15.  doi: 10.1016/j.jmaa.2013.04.081.

[7]

M. D. Donsker and S. R. S. Varadhan, Asymptotics for the polaron, Comm. Pure Appl. Math., 36 (1983), 505-528.  doi: 10.1002/cpa.3160360408.

[8]

I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc., 1 (1979), 443-474.  doi: 10.1090/S0273-0979-1979-14595-6.

[9]

A. Elgart and B. Schlein, Mean field dynamics of boson stars, Comm. Pure Appl. Math., 60 (2007), 500-545.  doi: 10.1002/cpa.20134.

[10]

H. Fröhlich, Theory of electrical breakdown in ionic crystal, Proc. Roy. Soc. Edinburgh Sect. A, 160 (1937), 230-241.  doi: 10.1098/rspa.1937.0106.

[11]

Y. Fu and X. Zhang, Multiple solutions for a class of p(x)-Laplacian equations involving the critical exponent, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 466 (2010), 1667-1686.  doi: 10.1098/rspa.2009.0463.

[12]

M. Ghergu and S. D. Taliaferro, Pointwise bounds and blow-up for Choquard-Pekar inequalities at an isolated singularity, J. Differential Equations, 261 (2016), 189-217.  doi: 10.1016/j.jde.2016.03.004.

[13]

D. Giulini and A. Großardt, The Schrödinger-Newton equation as a non-relativistic limit of self-gravitating Klein-Gordon and Dirac fields, Classical Quantum Gravity, 29 (2012), 215010, 25 pp. doi: 10.1088/0264-9381/29/21/215010.

[14]

K. R. W. Jones, Gravitational self-energy as the litmus of reality, Modern Physics Letters A, 10 (1995), 657-668.  doi: 10.1142/S0217732395000703.

[15]

I. H. Kim and Y.-H. Kim, Mountain pass type solutions and positivity of the infimum eigenvalue for quasilinear elliptic equations with variable exponents, Manuscripta Math., 147 (2015), 169-191.  doi: 10.1007/s00229-014-0718-2.

[16]

X. Li and S. Ma, Choquard equations with critical nonlinearities, Commun. Contemp. Math., 22 (2020), 1950023, 28 pp. doi: 10.1142/S0219199719500238.

[17]

E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Studies in Appl. Math., 57 (1976/77), 93-105.  doi: 10.1002/sapm197757293.

[18]

E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 2001. doi: 10.1090/gsm/014.

[19]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195 (2010), 455-467.  doi: 10.1007/s00205-008-0208-3.

[20]

G. Mingione and V. D. Rădulescu, Recent developments in problems with nonstandard growth and nonuniform ellipticity, J. Math. Anal. Appl., 501 (2021), Paper No. 125197, 41 pp. doi: 10.1016/j.jmaa.2021.125197.

[21]

J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math., vol. 1034, Springer-Verlag, Berlin, 1983. doi: 10.1007/BFb0072210.

[22]

S. Pekar, Untersuchung Über die Elektronentheorie der Kristalle, Akademie Verlag, Berlin, 1954.

[23]

R. Penrose, Quantum computation, entanglement and state reduction, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 356 (1998), 1927-1939.  doi: 10.1098/rsta.1998.0256.

[24]

R. Penrose, The Road to Reality. A Complete Guide to the Laws of the Universe, Alfred A. Knopf Inc., New York, 2005.

[25]

D. QinV. D. Rădulescu and X. Tang, Ground states and geometrically distinct solutions for periodic Choquard-Pekar equations, J. Differential Equations, 275 (2021), 652-683.  doi: 10.1016/j.jde.2020.11.021.

[26] V. D. Rădulescu and D. D. Repovš, Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, CRC Press, Taylor & Francis Group, Boca Raton, FL, 2015.  doi: 10.1201/b18601.
[27]

F. E. Schunck and E. W. Mielke, General relativistic boson stars, Classical Quantum Gravity, 20 (2003), R301–R356. doi: 10.1088/0264-9381/20/20/201.

[28]

M. Struwe, Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics, vol. 34, Springer-Verlag, Berlin, 2008.

[29]

X. TangS. ChenX. Lin and J. Yu, Ground state solutions of Nehari-Pankov type for Schrödinger equations with local super-quadratic conditions, J. Differential Equations, 268 (2020), 4663-4690.  doi: 10.1016/j.jde.2019.10.041.

[30]

J. Wei and M. Winter, Strongly interacting bumps for the Schrödinger-Newton equations, J. Math. Phys., 50 (2009), 012905, 22 pp. doi: 10.1063/1.3060169.

[31]

M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications, vol. 24, Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.

[32]

M. Willem, Functional Analysis. Fundamentals and Applications, Cornerstones, Birkhäuser, Springer, New York, 2013. doi: 10.1007/978-1-4614-7004-5.

[33]

J. Xia and Z.-Q. Wang, Saddle solutions for the Choquard equation, Calc. Var. Partial Differential Equations, 58 (2019), Art. 85, 30 pp. doi: 10.1007/s00526-019-1546-8.

show all references

References:
[1]

C. O. Alves, Existence of radial solutions for a class of $p(x)$-Laplacian equations with critical growth, Differential Integral Equations, 23 (2010), 113-123. 

[2]

C. O. Alves and L. S. Tavares, A Hardy-Littlewood-Sobolev-type inequality for variable exponents and applications to quasilinear Choquard equations involving variable exponent, Mediterr. J. Math., 16 (2019), Paper No. 55, 27 pp. doi: 10.1007/s00009-019-1316-z.

[3]

V. I. Bogachev, Measure Theory, volume I, Springer-Verlag, Berlin, Heidelberg, 2007. doi: 10.1007/978-3-540-34514-5.

[4]

S. ChenA. FiscellaP. Pucci and X. Tang, Semiclassical ground state solutions for critical Schrödinger-Poisson systems with lower perturbations, J. Differential Equations, 268 (2020), 2672-2716.  doi: 10.1016/j.jde.2019.09.041.

[5]

S. Chen and X. Tang, On the planar Schrödinger-Poisson system with the axially symmetric potential, J. Differential Equations, 268 (2020), 945-976.  doi: 10.1016/j.jde.2019.08.036.

[6]

M. Clapp and D. Salazar, Positive and sign-changing solutions to a nonlinear Choquard equation, J. Math. Anal. Appl., 407 (2013), 1-15.  doi: 10.1016/j.jmaa.2013.04.081.

[7]

M. D. Donsker and S. R. S. Varadhan, Asymptotics for the polaron, Comm. Pure Appl. Math., 36 (1983), 505-528.  doi: 10.1002/cpa.3160360408.

[8]

I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc., 1 (1979), 443-474.  doi: 10.1090/S0273-0979-1979-14595-6.

[9]

A. Elgart and B. Schlein, Mean field dynamics of boson stars, Comm. Pure Appl. Math., 60 (2007), 500-545.  doi: 10.1002/cpa.20134.

[10]

H. Fröhlich, Theory of electrical breakdown in ionic crystal, Proc. Roy. Soc. Edinburgh Sect. A, 160 (1937), 230-241.  doi: 10.1098/rspa.1937.0106.

[11]

Y. Fu and X. Zhang, Multiple solutions for a class of p(x)-Laplacian equations involving the critical exponent, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 466 (2010), 1667-1686.  doi: 10.1098/rspa.2009.0463.

[12]

M. Ghergu and S. D. Taliaferro, Pointwise bounds and blow-up for Choquard-Pekar inequalities at an isolated singularity, J. Differential Equations, 261 (2016), 189-217.  doi: 10.1016/j.jde.2016.03.004.

[13]

D. Giulini and A. Großardt, The Schrödinger-Newton equation as a non-relativistic limit of self-gravitating Klein-Gordon and Dirac fields, Classical Quantum Gravity, 29 (2012), 215010, 25 pp. doi: 10.1088/0264-9381/29/21/215010.

[14]

K. R. W. Jones, Gravitational self-energy as the litmus of reality, Modern Physics Letters A, 10 (1995), 657-668.  doi: 10.1142/S0217732395000703.

[15]

I. H. Kim and Y.-H. Kim, Mountain pass type solutions and positivity of the infimum eigenvalue for quasilinear elliptic equations with variable exponents, Manuscripta Math., 147 (2015), 169-191.  doi: 10.1007/s00229-014-0718-2.

[16]

X. Li and S. Ma, Choquard equations with critical nonlinearities, Commun. Contemp. Math., 22 (2020), 1950023, 28 pp. doi: 10.1142/S0219199719500238.

[17]

E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Studies in Appl. Math., 57 (1976/77), 93-105.  doi: 10.1002/sapm197757293.

[18]

E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 2001. doi: 10.1090/gsm/014.

[19]

L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195 (2010), 455-467.  doi: 10.1007/s00205-008-0208-3.

[20]

G. Mingione and V. D. Rădulescu, Recent developments in problems with nonstandard growth and nonuniform ellipticity, J. Math. Anal. Appl., 501 (2021), Paper No. 125197, 41 pp. doi: 10.1016/j.jmaa.2021.125197.

[21]

J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math., vol. 1034, Springer-Verlag, Berlin, 1983. doi: 10.1007/BFb0072210.

[22]

S. Pekar, Untersuchung Über die Elektronentheorie der Kristalle, Akademie Verlag, Berlin, 1954.

[23]

R. Penrose, Quantum computation, entanglement and state reduction, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 356 (1998), 1927-1939.  doi: 10.1098/rsta.1998.0256.

[24]

R. Penrose, The Road to Reality. A Complete Guide to the Laws of the Universe, Alfred A. Knopf Inc., New York, 2005.

[25]

D. QinV. D. Rădulescu and X. Tang, Ground states and geometrically distinct solutions for periodic Choquard-Pekar equations, J. Differential Equations, 275 (2021), 652-683.  doi: 10.1016/j.jde.2020.11.021.

[26] V. D. Rădulescu and D. D. Repovš, Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, CRC Press, Taylor & Francis Group, Boca Raton, FL, 2015.  doi: 10.1201/b18601.
[27]

F. E. Schunck and E. W. Mielke, General relativistic boson stars, Classical Quantum Gravity, 20 (2003), R301–R356. doi: 10.1088/0264-9381/20/20/201.

[28]

M. Struwe, Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics, vol. 34, Springer-Verlag, Berlin, 2008.

[29]

X. TangS. ChenX. Lin and J. Yu, Ground state solutions of Nehari-Pankov type for Schrödinger equations with local super-quadratic conditions, J. Differential Equations, 268 (2020), 4663-4690.  doi: 10.1016/j.jde.2019.10.041.

[30]

J. Wei and M. Winter, Strongly interacting bumps for the Schrödinger-Newton equations, J. Math. Phys., 50 (2009), 012905, 22 pp. doi: 10.1063/1.3060169.

[31]

M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications, vol. 24, Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.

[32]

M. Willem, Functional Analysis. Fundamentals and Applications, Cornerstones, Birkhäuser, Springer, New York, 2013. doi: 10.1007/978-1-4614-7004-5.

[33]

J. Xia and Z.-Q. Wang, Saddle solutions for the Choquard equation, Calc. Var. Partial Differential Equations, 58 (2019), Art. 85, 30 pp. doi: 10.1007/s00526-019-1546-8.

[1]

Xiaorong Luo, Anmin Mao, Yanbin Sang. Nonlinear Choquard equations with Hardy-Littlewood-Sobolev critical exponents. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1319-1345. doi: 10.3934/cpaa.2021022

[2]

Gui-Dong Li, Chun-Lei Tang. Existence of ground state solutions for Choquard equation involving the general upper critical Hardy-Littlewood-Sobolev nonlinear term. Communications on Pure and Applied Analysis, 2019, 18 (1) : 285-300. doi: 10.3934/cpaa.2019015

[3]

Ze Cheng, Congming Li. An extended discrete Hardy-Littlewood-Sobolev inequality. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1951-1959. doi: 10.3934/dcds.2014.34.1951

[4]

Hua Jin, Wenbin Liu, Huixing Zhang, Jianjun Zhang. Ground states of nonlinear fractional Choquard equations with Hardy-Littlewood-Sobolev critical growth. Communications on Pure and Applied Analysis, 2020, 19 (1) : 123-144. doi: 10.3934/cpaa.2020008

[5]

Jingbo Dou, Ye Li. Classification of extremal functions to logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3939-3953. doi: 10.3934/dcds.2018171

[6]

Genggeng Huang, Congming Li, Ximing Yin. Existence of the maximizing pair for the discrete Hardy-Littlewood-Sobolev inequality. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 935-942. doi: 10.3934/dcds.2015.35.935

[7]

Minbo Yang, Fukun Zhao, Shunneng Zhao. Classification of solutions to a nonlocal equation with doubly Hardy-Littlewood-Sobolev critical exponents. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5209-5241. doi: 10.3934/dcds.2021074

[8]

Ze Cheng, Genggeng Huang, Congming Li. On the Hardy-Littlewood-Sobolev type systems. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2059-2074. doi: 10.3934/cpaa.2016027

[9]

Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987

[10]

Yu Zheng, Carlos A. Santos, Zifei Shen, Minbo Yang. Least energy solutions for coupled hartree system with hardy-littlewood-sobolev critical exponents. Communications on Pure and Applied Analysis, 2020, 19 (1) : 329-369. doi: 10.3934/cpaa.2020018

[11]

Lorenzo D'Ambrosio, Enzo Mitidieri. Hardy-Littlewood-Sobolev systems and related Liouville theorems. Discrete and Continuous Dynamical Systems - S, 2014, 7 (4) : 653-671. doi: 10.3934/dcdss.2014.7.653

[12]

Wenxiong Chen, Chao Jin, Congming Li, Jisun Lim. Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations. Conference Publications, 2005, 2005 (Special) : 164-172. doi: 10.3934/proc.2005.2005.164

[13]

Ze Cheng, Changfeng Gui, Yeyao Hu. Existence of solutions to the supercritical Hardy-Littlewood-Sobolev system with fractional Laplacians. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1345-1358. doi: 10.3934/dcds.2019057

[14]

Xiaoqian Liu, Yutian Lei. Existence of positive solutions for integral systems of the weighted Hardy-Littlewood-Sobolev type. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 467-489. doi: 10.3934/dcds.2020018

[15]

Yingshu Lü, Zhongxue Lü. Some properties of solutions to the weighted Hardy-Littlewood-Sobolev type integral system. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3791-3810. doi: 10.3934/dcds.2016.36.3791

[16]

Xiaomei Sun, Wenyi Chen. Positive solutions for singular elliptic equations with critical Hardy-Sobolev exponent. Communications on Pure and Applied Analysis, 2011, 10 (2) : 527-540. doi: 10.3934/cpaa.2011.10.527

[17]

Wenmin Gong, Guangcun Lu. On Dirac equation with a potential and critical Sobolev exponent. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2231-2263. doi: 10.3934/cpaa.2015.14.2231

[18]

Anouar Bahrouni, VicenŢiu D. RĂdulescu. On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent. Discrete and Continuous Dynamical Systems - S, 2018, 11 (3) : 379-389. doi: 10.3934/dcdss.2018021

[19]

Yanfang Peng. On elliptic systems with Sobolev critical exponent. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3357-3373. doi: 10.3934/dcds.2016.36.3357

[20]

Guangze Gu, Xianhua Tang, Youpei Zhang. Ground states for asymptotically periodic fractional Kirchhoff equation with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3181-3200. doi: 10.3934/cpaa.2019143

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (230)
  • HTML views (170)
  • Cited by (0)

[Back to Top]