- Previous Article
- DCDS Home
- This Issue
-
Next Article
Crystalline flow starting from a general polygon
Equidistribution of translates of a homogeneous measure on the Borel–Serre compactification
Beijing International Center for Mathematical Research, Peking University, No. 5 Yiheyuan Road Haidian District, Beijing, 100871, China |
Let $ \mathit{\boldsymbol{\mathrm{G}}} $ be a semisimple linear algebraic group defined over rational numbers, $ \mathrm{K} $ be a maximal compact subgroup of its real points and $ \Gamma $ be an arithmetic lattice. One can associate a probability measure $ \mu_{ \mathrm{H}} $ on $ \Gamma \backslash \mathrm{G} $ for each subgroup $ \mathit{\boldsymbol{\mathrm{H}}} $ of $ \mathit{\boldsymbol{\mathrm{G}}} $ defined over $ \mathbb{Q} $ with no non-trivial rational characters. As G acts on $ \Gamma \backslash \mathrm{G} $ from the right, we can push forward this measure by elements from $ \mathrm{G} $. By pushing down these measures to $ \Gamma \backslash \mathrm{G}/ \mathrm{K} $, we call them homogeneous. It is a natural question to ask what are the possible weak-$ * $ limits of homogeneous measures. In the non-divergent case this has been answered by Eskin–Mozes–Shah. In the divergent case Daw–Gorodnik–Ullmo prove a refined version in some non-trivial compactifications of $ \Gamma \backslash \mathrm{G}/ \mathrm{K} $ for $ \mathit{\boldsymbol{\mathrm{H}}} $ generated by real unipotents. In the present article we build on their work and generalize the theorem to the case of general $ \mathit{\boldsymbol{\mathrm{H}}} $ with no non-trivial rational characters. Our results rely on (1) a non-divergent criterion on $ {\text{SL}}_n $ proved by geometry of numbers and a theorem of Kleinbock–Margulis; (2) relations between partial Borel–Serre compactifications associated with different groups proved by geometric invariant theory and reduction theory. 193 words.
References:
[1] |
A. Borel, Introduction to Arithmetic Groups, University Lectures Series, vol. 73, American Mathematical Soc., 2019.
doi: 10.1090/ulect/073. |
[2] |
A. Borel and L. Ji, Compactifications of Symmetric and Locally Symmetric Spaces, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 2006. |
[3] |
A. Borel and J.-P. Serre,
Corners and arithmetic groups, Comment. Math. Helv., 48 (1973), 436-491.
doi: 10.1007/BF02566134. |
[4] |
S. G. Dani and G. A. Margulis,
Asymptotic behaviour of trajectories of unipotent flows on homogeneous spaces, Proc. Indian Acad. Sci. Math. Sci., 101 (1991), 1-17.
doi: 10.1007/BF02872005. |
[5] |
S. G. Dani and G. A. Margulis,
Limit distributions of orbits of unipotent flows and values of quadratic forms, I. M. Gel$\overset{'}{\mathop{f}}$and Seminar, Adv. Soviet Math., Amer. Math. Soc., Providence, RI, 16 (1993), 91-137.
|
[6] |
C. Daw, A. Gorodnik and E. Ullmo,
Convergence of measures on compactifications of locally symmetric spaces, Math. Z., 297 (2021), 1293-1328.
doi: 10.1007/s00209-020-02558-w. |
[7] |
C. Daw, A. Gorodnik, E. Ullmo and J. Li, The Space of Homogeneous Probability Measures on $\overline{\Gamma\backslash X}^S_{ \rm max }$ is Compact, e-prints, 2019, arXiv: 1910.04568. |
[8] |
W. Duke, Z. Rudnick and P. Sarnak,
Density of integer points on affine homogeneous varieties, Duke Math. J., 71 (1993), 143-179.
doi: 10.1215/S0012-7094-93-07107-4. |
[9] |
A. Eskin and C. McMullen,
Mixing, counting, and equidistribution in Lie groups, Duke Math. J., 71 (1993), 181-209.
doi: 10.1215/S0012-7094-93-07108-6. |
[10] |
A. Eskin, G. Margulis and S. Mozes,
Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Ann. of Math., 147 (1998), 93-141.
doi: 10.2307/120984. |
[11] |
A. Eskin, S. Mozes and N. Shah,
Unipotent flows and counting lattice points on homogeneous varieties, Ann. of Math., 143 (1996), 253-299.
doi: 10.2307/2118644. |
[12] |
A. Eskin, S. Mozes and N. Shah,
Non-divergence of translates of certain algebraic measures, Geom. Funct. Anal., 7 (1997), 48-80.
doi: 10.1007/PL00001616. |
[13] |
D. Y. Kleinbock and G. A. Margulis,
Flows on homogeneous spaces and Diophantine approximation on manifolds, Ann. of Math., 148 (1998), 339-360.
doi: 10.2307/120997. |
[14] |
B. Klingler and A. Yafaev,
The André-Oort conjecture, Ann. of Math., 180 (2014), 867-925.
doi: 10.4007/annals.2014.180.3.2. |
[15] |
G. D. Mostow,
Self-adjoint groups, Ann. of Math., 62 (1955), 44-55.
doi: 10.2307/2007099. |
[16] |
S. Mozes and N. Shah,
On the space of ergodic invariant measures of unipotent flows, Ergodic Theory Dynam. Systems, 15 (1995), 149-159.
doi: 10.1017/S0143385700008282. |
[17] |
D. Mumford, J. Fogarty and F. Kirwan, Geometric Invariant Theory, 3$^{rd}$ edition, Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. |
[18] |
M. Ratner,
On Raghunathan's measure conjecture, Ann. of Math., 134 (1991), 545-607.
doi: 10.2307/2944357. |
[19] |
T. A. Springer, Linear Algebraic Groups, 2$^{nd}$ edition, Progress in Mathematics, vol. 9, Birkhäuser Boston, Inc., Boston, MA, 1998.
doi: 10.1007/978-0-8176-4840-4. |
[20] |
E. Ullmo and A. Yafaev,
Galois orbits and equidistribution of special subvarieties: Towards the André-Oort conjecture, Ann. of Math., 180 (2014), 823-865.
doi: 10.4007/annals.2014.180.3.1. |
[21] |
R. Zhang, Translates of homogeneous measures associated with Observable Subgroups on some homogeneous spaces, arXiv e-prints, 2020, arXiv: 1909.02666. |
show all references
References:
[1] |
A. Borel, Introduction to Arithmetic Groups, University Lectures Series, vol. 73, American Mathematical Soc., 2019.
doi: 10.1090/ulect/073. |
[2] |
A. Borel and L. Ji, Compactifications of Symmetric and Locally Symmetric Spaces, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 2006. |
[3] |
A. Borel and J.-P. Serre,
Corners and arithmetic groups, Comment. Math. Helv., 48 (1973), 436-491.
doi: 10.1007/BF02566134. |
[4] |
S. G. Dani and G. A. Margulis,
Asymptotic behaviour of trajectories of unipotent flows on homogeneous spaces, Proc. Indian Acad. Sci. Math. Sci., 101 (1991), 1-17.
doi: 10.1007/BF02872005. |
[5] |
S. G. Dani and G. A. Margulis,
Limit distributions of orbits of unipotent flows and values of quadratic forms, I. M. Gel$\overset{'}{\mathop{f}}$and Seminar, Adv. Soviet Math., Amer. Math. Soc., Providence, RI, 16 (1993), 91-137.
|
[6] |
C. Daw, A. Gorodnik and E. Ullmo,
Convergence of measures on compactifications of locally symmetric spaces, Math. Z., 297 (2021), 1293-1328.
doi: 10.1007/s00209-020-02558-w. |
[7] |
C. Daw, A. Gorodnik, E. Ullmo and J. Li, The Space of Homogeneous Probability Measures on $\overline{\Gamma\backslash X}^S_{ \rm max }$ is Compact, e-prints, 2019, arXiv: 1910.04568. |
[8] |
W. Duke, Z. Rudnick and P. Sarnak,
Density of integer points on affine homogeneous varieties, Duke Math. J., 71 (1993), 143-179.
doi: 10.1215/S0012-7094-93-07107-4. |
[9] |
A. Eskin and C. McMullen,
Mixing, counting, and equidistribution in Lie groups, Duke Math. J., 71 (1993), 181-209.
doi: 10.1215/S0012-7094-93-07108-6. |
[10] |
A. Eskin, G. Margulis and S. Mozes,
Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Ann. of Math., 147 (1998), 93-141.
doi: 10.2307/120984. |
[11] |
A. Eskin, S. Mozes and N. Shah,
Unipotent flows and counting lattice points on homogeneous varieties, Ann. of Math., 143 (1996), 253-299.
doi: 10.2307/2118644. |
[12] |
A. Eskin, S. Mozes and N. Shah,
Non-divergence of translates of certain algebraic measures, Geom. Funct. Anal., 7 (1997), 48-80.
doi: 10.1007/PL00001616. |
[13] |
D. Y. Kleinbock and G. A. Margulis,
Flows on homogeneous spaces and Diophantine approximation on manifolds, Ann. of Math., 148 (1998), 339-360.
doi: 10.2307/120997. |
[14] |
B. Klingler and A. Yafaev,
The André-Oort conjecture, Ann. of Math., 180 (2014), 867-925.
doi: 10.4007/annals.2014.180.3.2. |
[15] |
G. D. Mostow,
Self-adjoint groups, Ann. of Math., 62 (1955), 44-55.
doi: 10.2307/2007099. |
[16] |
S. Mozes and N. Shah,
On the space of ergodic invariant measures of unipotent flows, Ergodic Theory Dynam. Systems, 15 (1995), 149-159.
doi: 10.1017/S0143385700008282. |
[17] |
D. Mumford, J. Fogarty and F. Kirwan, Geometric Invariant Theory, 3$^{rd}$ edition, Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. |
[18] |
M. Ratner,
On Raghunathan's measure conjecture, Ann. of Math., 134 (1991), 545-607.
doi: 10.2307/2944357. |
[19] |
T. A. Springer, Linear Algebraic Groups, 2$^{nd}$ edition, Progress in Mathematics, vol. 9, Birkhäuser Boston, Inc., Boston, MA, 1998.
doi: 10.1007/978-0-8176-4840-4. |
[20] |
E. Ullmo and A. Yafaev,
Galois orbits and equidistribution of special subvarieties: Towards the André-Oort conjecture, Ann. of Math., 180 (2014), 823-865.
doi: 10.4007/annals.2014.180.3.1. |
[21] |
R. Zhang, Translates of homogeneous measures associated with Observable Subgroups on some homogeneous spaces, arXiv e-prints, 2020, arXiv: 1909.02666. |
[1] |
Amal Attouchi, Eero Ruosteenoja. Gradient regularity for a singular parabolic equation in non-divergence form. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5955-5972. doi: 10.3934/dcds.2020254 |
[2] |
Serena Dipierro, Aram Karakhanyan, Enrico Valdinoci. Classification of irregular free boundary points for non-divergence type equations with discontinuous coefficients. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6073-6090. doi: 10.3934/dcds.2018262 |
[3] |
Doyoon Kim, Hongjie Dong, Hong Zhang. Neumann problem for non-divergence elliptic and parabolic equations with BMO$_x$ coefficients in weighted Sobolev spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4895-4914. doi: 10.3934/dcds.2016011 |
[4] |
Jingxue Yin, Chunhua Jin. Critical exponents and traveling wavefronts of a degenerate-singular parabolic equation in non-divergence form. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 213-227. doi: 10.3934/dcdsb.2010.13.213 |
[5] |
Andrea Bonfiglioli, Ermanno Lanconelli and Francesco Uguzzoni. Levi's parametrix for some sub-elliptic non-divergence form operators. Electronic Research Announcements, 2003, 9: 10-18. |
[6] |
Teresa Alberico, Costantino Capozzoli, Luigi D'Onofrio, Roberta Schiattarella. $G$-convergence for non-divergence elliptic operators with VMO coefficients in $\mathbb R^3$. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 129-137. doi: 10.3934/dcdss.2019009 |
[7] |
Mitsuru Shibayama. Non-integrability criterion for homogeneous Hamiltonian systems via blowing-up technique of singularities. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3707-3719. doi: 10.3934/dcds.2015.35.3707 |
[8] |
Nimish Shah, Lei Yang. Equidistribution of curves in homogeneous spaces and Dirichlet's approximation theorem for matrices. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5247-5287. doi: 10.3934/dcds.2020227 |
[9] |
Agnieszka Badeńska. Measure rigidity for some transcendental meromorphic functions. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2375-2402. doi: 10.3934/dcds.2012.32.2375 |
[10] |
Boris Kalinin, Anatole Katok and Federico Rodriguez Hertz. New progress in nonuniform measure and cocycle rigidity. Electronic Research Announcements, 2008, 15: 79-92. doi: 10.3934/era.2008.15.79 |
[11] |
Raphaël Danchin, Piotr B. Mucha. Divergence. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1163-1172. doi: 10.3934/dcdss.2013.6.1163 |
[12] |
Mike Boyle. The work of Mike Hochman on multidimensional symbolic dynamics and Borel dynamics. Journal of Modern Dynamics, 2019, 15: 427-435. doi: 10.3934/jmd.2019026 |
[13] |
Ralf Spatzier. On the work of Rodriguez Hertz on rigidity in dynamics. Journal of Modern Dynamics, 2016, 10: 191-207. doi: 10.3934/jmd.2016.10.191 |
[14] |
Dmitry Dolgopyat, Bassam Fayad, Sixu Liu. Multiple Borel–Cantelli Lemma in dynamics and MultiLog Law for recurrence. Journal of Modern Dynamics, 2022, 18: 209-289. doi: 10.3934/jmd.2022009 |
[15] |
Chihiro Matsuoka, Koichi Hiraide. Special functions created by Borel-Laplace transform of Hénon map. Electronic Research Announcements, 2011, 18: 1-11. doi: 10.3934/era.2011.18.1 |
[16] |
Danijela Damjanovic, Anatole Katok. Local rigidity of homogeneous parabolic actions: I. A model case. Journal of Modern Dynamics, 2011, 5 (2) : 203-235. doi: 10.3934/jmd.2011.5.203 |
[17] |
Boris Kalinin, Anatole Katok. Measure rigidity beyond uniform hyperbolicity: invariant measures for cartan actions on tori. Journal of Modern Dynamics, 2007, 1 (1) : 123-146. doi: 10.3934/jmd.2007.1.123 |
[18] |
Tien-Cuong Dinh, Nessim Sibony. Rigidity of Julia sets for Hénon type maps. Journal of Modern Dynamics, 2014, 8 (3&4) : 499-548. doi: 10.3934/jmd.2014.8.499 |
[19] |
Maria Rosaria Lancia, Valerio Regis Durante, Paola Vernole. Asymptotics for Venttsel' problems for operators in non divergence form in irregular domains. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1493-1520. doi: 10.3934/dcdss.2016060 |
[20] |
F. Rodriguez Hertz, M. A. Rodriguez Hertz, A. Tahzibi and R. Ures. A criterion for ergodicity for non-uniformly hyperbolic diffeomorphisms. Electronic Research Announcements, 2007, 14: 74-81. doi: 10.3934/era.2007.14.74 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]