-
Previous Article
Geodesic planes in geometrically finite manifolds-corrigendum
- DCDS Home
- This Issue
- Next Article
Liouville-type theorem for high order degenerate Lane-Emden system
Department of Mathematical Science, Tsinghua University, Beijing, 100084, China |
$\left\{ \begin{align} & {{(-A)}^{m}}u={{v}^{p}} \\ & {{(-A)}^{m}}v={{u}^{q}}\quad \text{ in }\mathbb{R}_{+}^{n+1}:=\left\{ (x,y)|x\in {{\mathbb{R}}^{n}},y>0 \right\}, \\ & u\ge 0,v\ge 0 \\ \end{align} \right.\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left( 1 \right)$ |
$ A: = y\partial_{y}^2+a\partial_{y}+\Delta_{x}, \;a\geq 1 $ |
$ n+2a>2m, m\in \mathbb{Z}^+,\;p,\,q\geq 1 $ |
$ 1<p,\, q<\frac{n+2a+2m}{n+2a-2m} $ |
$ p = q = \frac{n+2a+2m}{n+2a-2m} $ |
$ \frac{1}{p+1}+\frac{1}{q+1}>\frac{n+2a-2m}{n+2a} $ |
$ (-A)^{m}u\geq v^p, (-A)^{m}v\geq u^q, u\geq 0, v\geq 0, $ |
$ \mathbb{R}_+^{n+1} $ |
$ (n+2a-2m)q<\frac{n+2a}{p}+2m $ |
$ (n+2a-2m)p<\frac{n+2a}{q}+2m $ |
$ p,q>1 $ |
References:
[1] |
L. Caffarelli, B. Gidas and J. Spruck,
Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math, 42 (1989), 271-297.
doi: 10.1002/cpa.3160420304. |
[2] |
W. Chen, C. Li and B. OU,
Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116. |
[3] |
J. Chern and S. Yang,
A divergence-type identity in a punctured domain and its applicaton to a singular polyharmonic problem, J. Dynam. Differential Equations, 16 (2004), 587-604.
doi: 10.1007/s10884-004-4293-1. |
[4] |
P. Clément, R. Manásevich and E. Mitidieri,
Positive solutions for a quasilinear system via blow up, Comm. Partial Differential Equations, 18 (1993), 2071-2106.
|
[5] |
B. Gidas, W. Ni and L. Nirenberg,
Symmetry of positive solutions of nonlinear elliptic equations in $\mathbb{R}^{n}$, Adv. Math., 7 (1981), 369-402.
|
[6] |
Y. Guo and J. Nie,
Classification for positive solutions of degenerate elliptic system, Discrete Contin. Dyn. Syst., 39 (2019), 1457-1475.
doi: 10.3934/dcds.2018130. |
[7] |
Q. Han, J. Hong and G. Hang,
Compactness of Alexandrov-Nirenberg surfaces, Comm. Pure Appl. Math., 70 (2017), 1706-1753.
doi: 10.1002/cpa.21686. |
[8] |
G. Hang,
A Liouville theorem of degenerate elliptic equation and its application, Discrete Contin. Dyn. Syst., 33 (2013), 4549-4566.
doi: 10.3934/dcds.2013.33.4549. |
[9] |
G. Hang and C. Li,
A Liouville theorem for high order degenerate elliptic equations, J. Differential Equations, 258 (2015), 1229-1251.
doi: 10.1016/j.jde.2014.10.017. |
[10] |
G. Huang,
A priori bounds for a class of semi-linear degenerate elliptic equations, Sci. China Math., 57 (2014), 1911-1926.
doi: 10.1007/s11425-014-4770-x. |
[11] |
Y. Li,
Remarks on some conformally invariant integral equations: The method of moving spheres, J. Eur. Math. Soc, 6 (2004), 153-180.
doi: 10.4171/JEMS/6. |
[12] |
C. Li,
Local asymptotic symmetry of singular solutions to nonlinear elliptic equations, Invent. Math., 123 (1996), 221-231.
doi: 10.1007/s002220050023. |
[13] |
C. Lin,
A classification of solutions of a conformally invariant fourth order equation in $\mathbb{R}^{n}$, Comment. Math. Helv., 73 (1998), 206-231.
doi: 10.1007/s000140050052. |
[14] |
J. Liu, Y. Guo and Y. Zhang,
Liouville-type theorems for polyharmonic systems in $\mathbb{R}^N$, J. Differential Equations, 225 (2006), 685-709.
doi: 10.1016/j.jde.2005.10.016. |
[15] |
E. Mitidieri,
A Rellich-type identity and applications, Comm. Partial Differential Equations, 18 (1993), 125-151.
doi: 10.1080/03605309308820923. |
[16] |
J. Wei and X. Xu,
Classification of solutions of higher order conformally invariant equations, Math. ANN, 313 (1999), 207-228.
doi: 10.1007/s002080050258. |
[17] |
X. Xu,
Classification of solutions of certain fourth-order nonlinear ellliptic equations in $\mathbb{R}^4$, Pacific J. Math., 225 (2006), 361-378.
doi: 10.2140/pjm.2006.225.361. |
show all references
References:
[1] |
L. Caffarelli, B. Gidas and J. Spruck,
Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math, 42 (1989), 271-297.
doi: 10.1002/cpa.3160420304. |
[2] |
W. Chen, C. Li and B. OU,
Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116. |
[3] |
J. Chern and S. Yang,
A divergence-type identity in a punctured domain and its applicaton to a singular polyharmonic problem, J. Dynam. Differential Equations, 16 (2004), 587-604.
doi: 10.1007/s10884-004-4293-1. |
[4] |
P. Clément, R. Manásevich and E. Mitidieri,
Positive solutions for a quasilinear system via blow up, Comm. Partial Differential Equations, 18 (1993), 2071-2106.
|
[5] |
B. Gidas, W. Ni and L. Nirenberg,
Symmetry of positive solutions of nonlinear elliptic equations in $\mathbb{R}^{n}$, Adv. Math., 7 (1981), 369-402.
|
[6] |
Y. Guo and J. Nie,
Classification for positive solutions of degenerate elliptic system, Discrete Contin. Dyn. Syst., 39 (2019), 1457-1475.
doi: 10.3934/dcds.2018130. |
[7] |
Q. Han, J. Hong and G. Hang,
Compactness of Alexandrov-Nirenberg surfaces, Comm. Pure Appl. Math., 70 (2017), 1706-1753.
doi: 10.1002/cpa.21686. |
[8] |
G. Hang,
A Liouville theorem of degenerate elliptic equation and its application, Discrete Contin. Dyn. Syst., 33 (2013), 4549-4566.
doi: 10.3934/dcds.2013.33.4549. |
[9] |
G. Hang and C. Li,
A Liouville theorem for high order degenerate elliptic equations, J. Differential Equations, 258 (2015), 1229-1251.
doi: 10.1016/j.jde.2014.10.017. |
[10] |
G. Huang,
A priori bounds for a class of semi-linear degenerate elliptic equations, Sci. China Math., 57 (2014), 1911-1926.
doi: 10.1007/s11425-014-4770-x. |
[11] |
Y. Li,
Remarks on some conformally invariant integral equations: The method of moving spheres, J. Eur. Math. Soc, 6 (2004), 153-180.
doi: 10.4171/JEMS/6. |
[12] |
C. Li,
Local asymptotic symmetry of singular solutions to nonlinear elliptic equations, Invent. Math., 123 (1996), 221-231.
doi: 10.1007/s002220050023. |
[13] |
C. Lin,
A classification of solutions of a conformally invariant fourth order equation in $\mathbb{R}^{n}$, Comment. Math. Helv., 73 (1998), 206-231.
doi: 10.1007/s000140050052. |
[14] |
J. Liu, Y. Guo and Y. Zhang,
Liouville-type theorems for polyharmonic systems in $\mathbb{R}^N$, J. Differential Equations, 225 (2006), 685-709.
doi: 10.1016/j.jde.2005.10.016. |
[15] |
E. Mitidieri,
A Rellich-type identity and applications, Comm. Partial Differential Equations, 18 (1993), 125-151.
doi: 10.1080/03605309308820923. |
[16] |
J. Wei and X. Xu,
Classification of solutions of higher order conformally invariant equations, Math. ANN, 313 (1999), 207-228.
doi: 10.1007/s002080050258. |
[17] |
X. Xu,
Classification of solutions of certain fourth-order nonlinear ellliptic equations in $\mathbb{R}^4$, Pacific J. Math., 225 (2006), 361-378.
doi: 10.2140/pjm.2006.225.361. |
[1] |
Frank Arthur, Xiaodong Yan, Mingfeng Zhao. A Liouville-type theorem for higher order elliptic systems. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3317-3339. doi: 10.3934/dcds.2014.34.3317 |
[2] |
Frank Arthur, Xiaodong Yan. A Liouville-type theorem for higher order elliptic systems of Hé non-Lane-Emden type. Communications on Pure and Applied Analysis, 2016, 15 (3) : 807-830. doi: 10.3934/cpaa.2016.15.807 |
[3] |
Quoc Hung Phan. Optimal Liouville-type theorems for a parabolic system. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 399-409. doi: 10.3934/dcds.2015.35.399 |
[4] |
Alberto Farina. Symmetry of components, Liouville-type theorems and classification results for some nonlinear elliptic systems. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5869-5877. doi: 10.3934/dcds.2015.35.5869 |
[5] |
Kui Li, Zhitao Zhang. Liouville-type theorem for higher-order Hardy-Hénon system. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3851-3869. doi: 10.3934/cpaa.2021134 |
[6] |
Dongsheng Kang, Liangshun Xu. Biharmonic systems involving multiple Rellich-type potentials and critical Rellich-Sobolev nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (2) : 333-346. doi: 10.3934/cpaa.2018019 |
[7] |
Pavol Quittner, Philippe Souplet. Parabolic Liouville-type theorems via their elliptic counterparts. Conference Publications, 2011, 2011 (Special) : 1206-1213. doi: 10.3934/proc.2011.2011.1206 |
[8] |
Anh Tuan Duong, Quoc Hung Phan. A Liouville-type theorem for cooperative parabolic systems. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 823-833. doi: 10.3934/dcds.2018035 |
[9] |
Shigeru Sakaguchi. A Liouville-type theorem for some Weingarten hypersurfaces. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 887-895. doi: 10.3934/dcdss.2011.4.887 |
[10] |
Alberto Farina, Miguel Angel Navarro. Some Liouville-type results for stable solutions involving the mean curvature operator: The radial case. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 1233-1256. doi: 10.3934/dcds.2020076 |
[11] |
Philippe Souplet. Liouville-type theorems for elliptic Schrödinger systems associated with copositive matrices. Networks and Heterogeneous Media, 2012, 7 (4) : 967-988. doi: 10.3934/nhm.2012.7.967 |
[12] |
Foued Mtiri. Liouville type theorems for stable solutions of elliptic system involving the Grushin operator. Communications on Pure and Applied Analysis, 2022, 21 (2) : 541-553. doi: 10.3934/cpaa.2021187 |
[13] |
Esa V. Vesalainen. Rellich type theorems for unbounded domains. Inverse Problems and Imaging, 2014, 8 (3) : 865-883. doi: 10.3934/ipi.2014.8.865 |
[14] |
Dezhong Chen, Li Ma. A Liouville type Theorem for an integral system. Communications on Pure and Applied Analysis, 2006, 5 (4) : 855-859. doi: 10.3934/cpaa.2006.5.855 |
[15] |
Kaouther Ammar, Philippe Souplet. Liouville-type theorems and universal bounds for nonnegative solutions of the porous medium equation with source. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 665-689. doi: 10.3934/dcds.2010.26.665 |
[16] |
Sami Baraket, Soumaya Sâanouni, Nihed Trabelsi. Singular limit solutions for a 2-dimensional semilinear elliptic system of Liouville type in some general case. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 1013-1063. doi: 10.3934/dcds.2020069 |
[17] |
Hiroshi Isozaki, Hisashi Morioka. A Rellich type theorem for discrete Schrödinger operators. Inverse Problems and Imaging, 2014, 8 (2) : 475-489. doi: 10.3934/ipi.2014.8.475 |
[18] |
Xinjing Wang. Liouville type theorem for Fractional Laplacian system. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5253-5268. doi: 10.3934/cpaa.2020236 |
[19] |
Zongming Guo, Juncheng Wei. Liouville type results and regularity of the extremal solutions of biharmonic equation with negative exponents. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 2561-2580. doi: 10.3934/dcds.2014.34.2561 |
[20] |
Zhenjie Li, Ze Cheng, Dongsheng Li. The Liouville type theorem and local regularity results for nonlinear differential and integral systems. Communications on Pure and Applied Analysis, 2015, 14 (2) : 565-576. doi: 10.3934/cpaa.2015.14.565 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]