-
Previous Article
Optimal boundary regularity for some singular Monge-Ampère equations on bounded convex domains
- DCDS Home
- This Issue
-
Next Article
Lifting the regionally proximal relation and characterizations of distal extensions
Global weak solutions to the stochastic Ericksen–Leslie system in dimension two
1. | Department of Mathematics, Vanderbilt University, Nashville, TN 37240, USA |
2. | Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA |
We establish the global existence of weak martingale solutions to the simplified stochastic Ericksen–Leslie system modeling the nematic liquid crystal flow driven by Wiener-type noises on the two-dimensional bounded domains. The construction of solutions is based on the convergence of Ginzburg–Landau approximations. To achieve such a convergence, we first utilize the concentration-cancellation method for the Ericksen stress tensor fields based on a Pohozaev type argument, and then the Skorokhod compactness theorem, which is built upon uniform energy estimates.
References:
[1] |
A. Bensoussan,
Stochastic Navier–Stokes equations, Acta Applicandae Mathematica, 38 (1995), 267-304.
doi: 10.1007/BF00996149. |
[2] |
Z. Brzeźniak, G. Deugoué and P. A. Razafimandimby, On strong solution to the 2D stochastic Ericksen–Leslie system: A Ginzburg–Landau approximation approach, arXiv preprint, arXiv: 2011.00100. (2020). |
[3] |
Z. Brzeźniak, G. Deugoué and P. A. Razafimandimby, On the 2D Ericksen-Leslie equations with anisotropic energy and external forces, arXiv preprint, arXiv: 2005.07659, (2020). |
[4] |
Z. Brzeźniak, E. Hausenblas and P. A. Razafimandimby, Strong solution to stochastic penalised nematic liquid crystals model driven by multiplicative Gaussian noise, arXiv: 2004.00590, (2020). |
[5] |
Z. Brzeźniak, E. Hausenblas and P. A. Razafimandimby,
A note on the stochastic Ericksen-Leslie equations for nematic liquid crystals, Disc. Contin. Dyn. Syst. Ser. B, 24 (2019), 5785-5802.
doi: 10.3934/dcdsb.2019106. |
[6] |
Z. Brzeźniak, E. Hausenblas and P. A. Razafimandimby,
Some results on the penalised nematic liquid crystals driven by multiplicative noise: Weak solution and maximum principle, Stochastics and Partial Differential Equations: Analysis and Computations, 7 (2019), 417-475.
doi: 10.1007/s40072-018-0131-z. |
[7] |
Z. Brzeźniak, U. Manna and A. A. Panda,
Martingale solutions of nematic liquid crystals driven by pure jump noise in the Marcus canonical form, J. Diff. Equations, 266 (2019), 6204-6283.
doi: 10.1016/j.jde.2018.11.001. |
[8] |
A. De Bouard, A. Hocquet and A. Prohl, Existence, uniqueness and regularity for the stochastic Ericksen–Leslie equation, Nonlinearity, 34 (2021), 4057–4114, arXiv: 1902.05921, (2019).
doi: 10.1088/1361-6544/ac022e. |
[9] |
R. J. DiPerna and A. Majda,
Reduced Hausdorff dimension and concentration-cancellation for two-dimensional incompressible flow, J. Amer. Math. Soc., 1 (1988), 59-95.
doi: 10.2307/1990967. |
[10] |
H. Du, T. Huang and C. Wang, Weak compactness of simplified nematic liquid flows in 2D, arXiv: 2006.04210, (2020). |
[11] |
J. L. Ericksen,
Conservation laws for liquid crystals, Transactions of the Society of Rheology, 5 (1961), 23-34.
doi: 10.1122/1.548883. |
[12] |
J. L. Ericksen,
Hydrostatic theory of liquid crystals, Arch. Ration. Mech. Anal., 9 (1962), 371-378.
doi: 10.1007/BF00253358. |
[13] |
F. Flandoli and D. Gatarek,
Martingale and stationary solutions for stochastic Navier–Stokes equations, Prob. Theory Related Fields, 102 (1995), 367-391.
doi: 10.1007/BF01192467. |
[14] |
I. Gyöngy and N. Krylov,
Existence of strong solutions for itô's stochastic equations via approximations, Prob. Theory Related fields, 105 (1996), 143-158.
doi: 10.1007/BF01203833. |
[15] |
M.-C. Hong,
Global existence of solutions of the simplified Ericksen–Leslie system in dimension two, Calc. Var. Partial Differential Equations, 40 (2011), 15-36.
doi: 10.1007/s00526-010-0331-5. |
[16] |
M.-C. Hong and Z. Xin,
Global existence of solutions of the liquid crystal flow for the Oseen–Frank model in $\mathbb R^2$, Adv. Math., 231 (2012), 1364-1400.
doi: 10.1016/j.aim.2012.06.009. |
[17] |
J. Huang, F. Lin and C. Wang,
Regularity and existence of global solutions to the Ericksen–Leslie system in $\mathbb{R}^2$, Comm. Math. Phys., 331 (2014), 805-850.
doi: 10.1007/s00220-014-2079-9. |
[18] |
J. Kortum,
Concentration-cancellation in the ericksen–leslie model, Calc. Var. Partial Differential Equations, 59 (2020), 1-16.
doi: 10.1007/s00526-020-01849-8. |
[19] |
F. M. Leslie,
Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal., 28 (1968), 265-283.
doi: 10.1007/BF00251810. |
[20] |
F. M. Leslie,
Continuum theory for nematic liquid crystals, Continuum Mechanics and Thermodynamics, 4 (1992), 167-175.
doi: 10.1007/BF01130288. |
[21] |
F. Lin, J. Lin and C. Wang,
Liquid crystal flows in two dimensions, Arch. Ration. Mech. Anal., 197 (2010), 297-336.
doi: 10.1007/s00205-009-0278-x. |
[22] |
F.-H. Lin and C. Liu,
Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), 501-537.
doi: 10.1002/cpa.3160480503. |
[23] |
F. Lin and C. Wang,
On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals, Chin. Ann. Math. Ser. B, 31 (2010), 921-938.
doi: 10.1007/s11401-010-0612-5. |
[24] |
F. Lin and C. Wang,
Recent developments of analysis for hydrodynamic flow of nematic liquid crystals, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372 (2014), 20130361.
doi: 10.1098/rsta.2013.0361. |
[25] |
F. Lin and C. Wang,
Global existence of weak solutions of the nematic liquid crystal flow in dimension three, Comm. Pure Appl. Math., 69 (2016), 1532-1571.
doi: 10.1002/cpa.21583. |
[26] |
J. Simon,
Sobolev, besov and nikolskii fractional spaces: Imbeddings and comparisons for vector valued spaces on an interval, Annali di Matematica Pura ed Applicata, 157 (1990), 117-148.
doi: 10.1007/BF01765315. |
[27] |
M. Struwe,
On the evolution of harmonic mappings of Riemannian surfaces, Comment. Math. Helvetici, 60 (1985), 558-581.
doi: 10.1007/BF02567432. |
show all references
References:
[1] |
A. Bensoussan,
Stochastic Navier–Stokes equations, Acta Applicandae Mathematica, 38 (1995), 267-304.
doi: 10.1007/BF00996149. |
[2] |
Z. Brzeźniak, G. Deugoué and P. A. Razafimandimby, On strong solution to the 2D stochastic Ericksen–Leslie system: A Ginzburg–Landau approximation approach, arXiv preprint, arXiv: 2011.00100. (2020). |
[3] |
Z. Brzeźniak, G. Deugoué and P. A. Razafimandimby, On the 2D Ericksen-Leslie equations with anisotropic energy and external forces, arXiv preprint, arXiv: 2005.07659, (2020). |
[4] |
Z. Brzeźniak, E. Hausenblas and P. A. Razafimandimby, Strong solution to stochastic penalised nematic liquid crystals model driven by multiplicative Gaussian noise, arXiv: 2004.00590, (2020). |
[5] |
Z. Brzeźniak, E. Hausenblas and P. A. Razafimandimby,
A note on the stochastic Ericksen-Leslie equations for nematic liquid crystals, Disc. Contin. Dyn. Syst. Ser. B, 24 (2019), 5785-5802.
doi: 10.3934/dcdsb.2019106. |
[6] |
Z. Brzeźniak, E. Hausenblas and P. A. Razafimandimby,
Some results on the penalised nematic liquid crystals driven by multiplicative noise: Weak solution and maximum principle, Stochastics and Partial Differential Equations: Analysis and Computations, 7 (2019), 417-475.
doi: 10.1007/s40072-018-0131-z. |
[7] |
Z. Brzeźniak, U. Manna and A. A. Panda,
Martingale solutions of nematic liquid crystals driven by pure jump noise in the Marcus canonical form, J. Diff. Equations, 266 (2019), 6204-6283.
doi: 10.1016/j.jde.2018.11.001. |
[8] |
A. De Bouard, A. Hocquet and A. Prohl, Existence, uniqueness and regularity for the stochastic Ericksen–Leslie equation, Nonlinearity, 34 (2021), 4057–4114, arXiv: 1902.05921, (2019).
doi: 10.1088/1361-6544/ac022e. |
[9] |
R. J. DiPerna and A. Majda,
Reduced Hausdorff dimension and concentration-cancellation for two-dimensional incompressible flow, J. Amer. Math. Soc., 1 (1988), 59-95.
doi: 10.2307/1990967. |
[10] |
H. Du, T. Huang and C. Wang, Weak compactness of simplified nematic liquid flows in 2D, arXiv: 2006.04210, (2020). |
[11] |
J. L. Ericksen,
Conservation laws for liquid crystals, Transactions of the Society of Rheology, 5 (1961), 23-34.
doi: 10.1122/1.548883. |
[12] |
J. L. Ericksen,
Hydrostatic theory of liquid crystals, Arch. Ration. Mech. Anal., 9 (1962), 371-378.
doi: 10.1007/BF00253358. |
[13] |
F. Flandoli and D. Gatarek,
Martingale and stationary solutions for stochastic Navier–Stokes equations, Prob. Theory Related Fields, 102 (1995), 367-391.
doi: 10.1007/BF01192467. |
[14] |
I. Gyöngy and N. Krylov,
Existence of strong solutions for itô's stochastic equations via approximations, Prob. Theory Related fields, 105 (1996), 143-158.
doi: 10.1007/BF01203833. |
[15] |
M.-C. Hong,
Global existence of solutions of the simplified Ericksen–Leslie system in dimension two, Calc. Var. Partial Differential Equations, 40 (2011), 15-36.
doi: 10.1007/s00526-010-0331-5. |
[16] |
M.-C. Hong and Z. Xin,
Global existence of solutions of the liquid crystal flow for the Oseen–Frank model in $\mathbb R^2$, Adv. Math., 231 (2012), 1364-1400.
doi: 10.1016/j.aim.2012.06.009. |
[17] |
J. Huang, F. Lin and C. Wang,
Regularity and existence of global solutions to the Ericksen–Leslie system in $\mathbb{R}^2$, Comm. Math. Phys., 331 (2014), 805-850.
doi: 10.1007/s00220-014-2079-9. |
[18] |
J. Kortum,
Concentration-cancellation in the ericksen–leslie model, Calc. Var. Partial Differential Equations, 59 (2020), 1-16.
doi: 10.1007/s00526-020-01849-8. |
[19] |
F. M. Leslie,
Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal., 28 (1968), 265-283.
doi: 10.1007/BF00251810. |
[20] |
F. M. Leslie,
Continuum theory for nematic liquid crystals, Continuum Mechanics and Thermodynamics, 4 (1992), 167-175.
doi: 10.1007/BF01130288. |
[21] |
F. Lin, J. Lin and C. Wang,
Liquid crystal flows in two dimensions, Arch. Ration. Mech. Anal., 197 (2010), 297-336.
doi: 10.1007/s00205-009-0278-x. |
[22] |
F.-H. Lin and C. Liu,
Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), 501-537.
doi: 10.1002/cpa.3160480503. |
[23] |
F. Lin and C. Wang,
On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals, Chin. Ann. Math. Ser. B, 31 (2010), 921-938.
doi: 10.1007/s11401-010-0612-5. |
[24] |
F. Lin and C. Wang,
Recent developments of analysis for hydrodynamic flow of nematic liquid crystals, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372 (2014), 20130361.
doi: 10.1098/rsta.2013.0361. |
[25] |
F. Lin and C. Wang,
Global existence of weak solutions of the nematic liquid crystal flow in dimension three, Comm. Pure Appl. Math., 69 (2016), 1532-1571.
doi: 10.1002/cpa.21583. |
[26] |
J. Simon,
Sobolev, besov and nikolskii fractional spaces: Imbeddings and comparisons for vector valued spaces on an interval, Annali di Matematica Pura ed Applicata, 157 (1990), 117-148.
doi: 10.1007/BF01765315. |
[27] |
M. Struwe,
On the evolution of harmonic mappings of Riemannian surfaces, Comment. Math. Helvetici, 60 (1985), 558-581.
doi: 10.1007/BF02567432. |
[1] |
Qiang Tao, Ying Yang. Exponential stability for the compressible nematic liquid crystal flow with large initial data. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1661-1669. doi: 10.3934/cpaa.2016007 |
[2] |
Sili Liu, Xinhua Zhao, Yingshan Chen. A new blowup criterion for strong solutions of the compressible nematic liquid crystal flow. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4515-4533. doi: 10.3934/dcdsb.2020110 |
[3] |
Bagisa Mukherjee, Chun Liu. On the stability of two nematic liquid crystal configurations. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 561-574. doi: 10.3934/dcdsb.2002.2.561 |
[4] |
M. Gregory Forest, Hongyun Wang, Hong Zhou. Sheared nematic liquid crystal polymer monolayers. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 497-517. doi: 10.3934/dcdsb.2009.11.497 |
[5] |
Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control and Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401 |
[6] |
Jihong Zhao, Qiao Liu, Shangbin Cui. Global existence and stability for a hydrodynamic system in the nematic liquid crystal flows. Communications on Pure and Applied Analysis, 2013, 12 (1) : 341-357. doi: 10.3934/cpaa.2013.12.341 |
[7] |
Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455 |
[8] |
Zhaoyang Qiu, Yixuan Wang. Martingale solution for stochastic active liquid crystal system. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2227-2268. doi: 10.3934/dcds.2020360 |
[9] |
Zhiyuan Geng, Wei Wang, Pingwen Zhang, Zhifei Zhang. Stability of half-degree point defect profiles for 2-D nematic liquid crystal. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6227-6242. doi: 10.3934/dcds.2017269 |
[10] |
Qiao Liu, Ting Zhang, Jihong Zhao. Well-posedness for the 3D incompressible nematic liquid crystal system in the critical $L^p$ framework. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 371-402. doi: 10.3934/dcds.2016.36.371 |
[11] |
Yang Liu, Xin Zhong. On the Cauchy problem of 3D nonhomogeneous incompressible nematic liquid crystal flows with vacuum. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5219-5238. doi: 10.3934/cpaa.2020234 |
[12] |
Francisco Guillén-González, Mouhamadou Samsidy Goudiaby. Stability and convergence at infinite time of several fully discrete schemes for a Ginzburg-Landau model for nematic liquid crystal flows. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4229-4246. doi: 10.3934/dcds.2012.32.4229 |
[13] |
Yang Liu, Sining Zheng, Huapeng Li, Shengquan Liu. Strong solutions to Cauchy problem of 2D compressible nematic liquid crystal flows. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3921-3938. doi: 10.3934/dcds.2017165 |
[14] |
Yinxia Wang. A remark on blow up criterion of three-dimensional nematic liquid crystal flows. Evolution Equations and Control Theory, 2016, 5 (2) : 337-348. doi: 10.3934/eect.2016007 |
[15] |
Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161 |
[16] |
Hao Wu. Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 379-396. doi: 10.3934/dcds.2010.26.379 |
[17] |
Boling Guo, Yongqian Han, Guoli Zhou. Random attractor for the 2D stochastic nematic liquid crystals flows. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2349-2376. doi: 10.3934/cpaa.2019106 |
[18] |
Zdzisław Brzeźniak, Erika Hausenblas, Paul André Razafimandimby. A note on the stochastic Ericksen-Leslie equations for nematic liquid crystals. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 5785-5802. doi: 10.3934/dcdsb.2019106 |
[19] |
T. Tachim Medjo. On the existence and uniqueness of solution to a stochastic simplified liquid crystal model. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2243-2264. doi: 10.3934/cpaa.2019101 |
[20] |
Guolian Wang, Boling Guo. Stochastic Korteweg-de Vries equation driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5255-5272. doi: 10.3934/dcds.2015.35.5255 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]