
-
Previous Article
Self polarization and traveling wave in a model for cell crawling migration
- DCDS Home
- This Issue
-
Next Article
One component regularity criteria for the axially symmetric MHD-Boussinesq system
"Large" strange attractors in the unfolding of a heteroclinic attractor
Centro de Matemática da Univ. do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal |
We present a mechanism for the emergence of strange attractors in a one-parameter family of differential equations defined on a 3-dimensional sphere. When the parameter is zero, its flow exhibits an attracting heteroclinic network (Bykov network) made by two 1-dimensional connections and one 2-dimensional separatrix between two saddles-foci with different Morse indices. After slightly increasing the parameter, while keeping the 1-dimensional connections unaltered, we concentrate our study in the case where the 2-dimensional invariant manifolds of the equilibria do not intersect. We will show that, for a set of parameters close enough to zero with positive Lebesgue measure, the dynamics exhibits strange attractors winding around the "ghost'' of a torus and supporting Sinai-Ruelle-Bowen (SRB) measures. We also prove the existence of a sequence of parameter values for which the family exhibits a superstable sink and describe the transition from a Bykov network to a strange attractor.
References:
[1] |
V. S. Afraimovich, S.-B. Hsu and H. E. Lin,
Chaotic behavior of three competing species of May–Leonard model under small periodic perturbations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11 (2001), 435-447.
doi: 10.1142/S021812740100216X. |
[2] |
M. Aguiar, Vector fields with heteroclinic networks, Ph.D. thesis, Departamento de Matemática Aplicada, Faculdade de Ciências da Universidade do Porto, 2003. |
[3] |
P. Ashwin and P. Chossat,
Attractors for robust heteroclinic cycles with continua of connections, J. Nonlinear Sci., 8 (1998), 103-129.
doi: 10.1007/s003329900045. |
[4] |
I. Baldomá, S. Ibáñez and T. Seara,
Hopf-Zero singularities truly unfold chaos, Commun. Nonlinear Sci. Numer. Simul., 84 (2020), 105162.
doi: 10.1016/j.cnsns.2019.105162. |
[5] |
M. Benedicks and L. Carleson,
The dynamics of the Hénon map, Ann. of Math., 133 (1991), 73-169.
doi: 10.2307/2944326. |
[6] |
M. Benedicks and L.-S. Young,
Sinai-Bowen-Ruelle measures for certain Hénon maps, Invent. Math., 112 (1993), 541-576.
doi: 10.1007/BF01232446. |
[7] |
H. Broer, C. Simó and J. C. Tatjer,
Towards global models near homoclinic tangencies of dissipative diffeomorphisms, Nonlinearity, 11 (1998), 667-770.
doi: 10.1088/0951-7715/11/3/015. |
[8] |
V. V. Bykov,
Orbit Structure in a neighborhood of a separatrix cycle containing two saddle-foci, Translations of the American Mathematical Society - Series 2, 200 (2000), 87-97.
doi: 10.1090/trans2/200/08. |
[9] |
M. L. Castro and A. A. P. Rodrigues,
Torus-breakdown near a heteroclinic attractor: A case study, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 31 (2021), 2130029.
doi: 10.1142/S0218127421300299. |
[10] |
B. Deng,
The shilnikov problem, exponential expansion, strong $\lambda$–lemma, $C^1$ linearisation and homoclinic bifurcation, J. Diff. Eqs., 79 (1989), 189-231.
doi: 10.1016/0022-0396(89)90100-9. |
[11] |
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, 42. Springer-Verlag, New York, 1990.
doi: 10.1007/978-1-4612-1140-2. |
[12] |
M. Hénon,
A two dimensional mapping with a strange attractor, Comm. Math. Phys., 50 (1976), 69-77.
doi: 10.1007/BF01608556. |
[13] |
A. J. Homburg,
Periodic attractors, strange attractors and hyperbolic dynamics near homoclinic orbits to saddle-focus equilibria, Nonlinearity, 15 (2002), 1029-1050.
doi: 10.1088/0951-7715/15/4/304. |
[14] |
A. J. Homburg and B. Sandstede,
Homoclinic and heteroclinic bifurcations in vector fields, Handbook of Dynamical Systems, 3 (2010), 379-524.
doi: 10.1016/S1874-575X(10)00316-4. |
[15] |
M. Jakobson,
Absolutely continuous invariant measures for one parameter families of one-dimensional maps, Comm. Math. Phys., 81 (1981), 39-88.
doi: 10.1007/BF01941800. |
[16] |
I. S. Labouriau and A. A. P. Rodrigues,
Global generic dynamics close to symmetry, J. Diff. Eqs., 253 (2012), 2527-2557.
doi: 10.1016/j.jde.2012.06.009. |
[17] |
I. S. Labouriau and A. A. P. Rodrigues,
Dense heteroclinic tangencies near a Bykov cycle, J. Diff. Eqs., 259 (2015), 5875-5902.
doi: 10.1016/j.jde.2015.07.017. |
[18] |
I. S. Labouriau and A. A. P. Rodrigues,
Global bifurcations close to symmetry, J. Math. Anal. Appl., 444 (2016), 648-671.
doi: 10.1016/j.jmaa.2016.06.032. |
[19] |
A. Mohapatra and W. Ott,
Homoclinic loops, heteroclinic cycles, and rank one dynamics, SIAM J. Appl. Dyn. Syst., 14 (2015), 107-131.
doi: 10.1137/140995659. |
[20] |
L. Mora and M. Viana,
Abundance of strange attractors, Acta Math., 171 (1993), 1-71.
doi: 10.1007/BF02392766. |
[21] |
W. Ott,
Strange attractors in periodically-kicked degenerate Hopf bifurcations, Comm. Math. Phys., 281 (2008), 775-791.
doi: 10.1007/s00220-008-0499-0. |
[22] |
W. Ott and M. Stenlund,
From limit cycles to strange attractors, Comm. Math. Phys., 296 (2010), 215-249.
doi: 10.1007/s00220-010-0994-y. |
[23] |
W. Ott and Q. Wang,
Periodic attractors versus nonuniform expansion in singular limits of families of rank one maps, Discrete Contin. Dyn. Syst., 26 (2010), 1035-1054.
doi: 10.3934/dcds.2010.26.1035. |
[24] |
A. A. P. Rodrigues,
Repelling dynamics near a Bykov cycle, J. Dynam. Differential Equations, 25 (2013), 605-625.
doi: 10.1007/s10884-013-9289-2. |
[25] |
A. A. P. Rodrigues, Unfolding a Bykov attractor: From an attracting torus to strange attractors, J. Dynam. Differential Equations, 2020.
doi: 10.1007/s10884-020-09858-z. |
[26] |
A. A. P. Rodrigues,
Abundance of strange attractors near an attracting periodically perturbed network, SIAM J. Appl. Dyn. Syst., 20 (2021), 541-570.
doi: 10.1137/20M1335510. |
[27] |
A. A. P. Rodrigues, Dissecting a resonance wedge on heteroclinic bifurcations, J. Stat. Phys., 184 (2021), Paper No. 25, 32 pp.
doi: 10.1007/s10955-021-02811-4. |
[28] |
D. Ruelle and F. Takens,
On the nature of turbulence, Commun. Math. Phys., 20 (1971), 167-192.
doi: 10.1007/BF01646553. |
[29] |
A. Shilnikov, G. Nicolis and C. Nicolis,
Bifurcation and predictability analysis of a low-order atmospheric circulation model, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 5 (1995), 1701-1711.
doi: 10.1142/S0218127495001253. |
[30] |
A. Shilnikov, L. Shilnikov and D. Turaev,
On some mathematical topics in classical synchronization: A tutorial, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14 (2004), 2143-2160.
doi: 10.1142/S0218127404010539. |
[31] |
Q. Wang and W. Ott,
Dissipative homoclinic loops of two-dimensional maps and strange attractors with one direction of instability, Comm. Pure Appl. Math., 64 (2011), 1439-1496.
doi: 10.1002/CPA.20379. |
[32] |
Q. Wang and L.-S. Young,
Strange attractors with one direction of instability, Commun. Math. Phys., 218 (2001), 1-97.
doi: 10.1007/s002200100379. |
[33] |
Q. Wang and L.-S. Young,
From invariant curves to strange attractors, Commun. Math. Phys., 225 (2002), 275-304.
doi: 10.1007/s002200100582. |
[34] |
Q. Wang and L.-S. Young,
Strange attractors in periodically-kicked limit cycles and Hopf bifurcations, Commun. Math. Phys., 240 (2003), 509-529.
doi: 10.1007/s00220-003-0902-9. |
[35] |
Q. Wang and L.-S. Young,
Nonuniformly expanding 1D maps, Commun. Math. Phys., 264 (2006), 255-282.
doi: 10.1007/s00220-005-1485-4. |
[36] |
Q. Wang and L.-S. Young,
Toward a theory of rank one attractors, Ann. of Math., 167 (2008), 349-480.
doi: 10.4007/annals.2008.167.349. |
[37] |
Q. Wang and L.-S. Young,
Dynamical profile of a class of rank-one attractors, Ergodic Theory Dynam. Systems, 33 (2013), 1221-1264.
doi: 10.1017/S014338571200020X. |
[38] |
L.-S. Young,
Statistical properties of dynamical systems with some hyperbolicity, Ann. Math., 147 (1998), 585-650.
doi: 10.2307/120960. |
show all references
References:
[1] |
V. S. Afraimovich, S.-B. Hsu and H. E. Lin,
Chaotic behavior of three competing species of May–Leonard model under small periodic perturbations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11 (2001), 435-447.
doi: 10.1142/S021812740100216X. |
[2] |
M. Aguiar, Vector fields with heteroclinic networks, Ph.D. thesis, Departamento de Matemática Aplicada, Faculdade de Ciências da Universidade do Porto, 2003. |
[3] |
P. Ashwin and P. Chossat,
Attractors for robust heteroclinic cycles with continua of connections, J. Nonlinear Sci., 8 (1998), 103-129.
doi: 10.1007/s003329900045. |
[4] |
I. Baldomá, S. Ibáñez and T. Seara,
Hopf-Zero singularities truly unfold chaos, Commun. Nonlinear Sci. Numer. Simul., 84 (2020), 105162.
doi: 10.1016/j.cnsns.2019.105162. |
[5] |
M. Benedicks and L. Carleson,
The dynamics of the Hénon map, Ann. of Math., 133 (1991), 73-169.
doi: 10.2307/2944326. |
[6] |
M. Benedicks and L.-S. Young,
Sinai-Bowen-Ruelle measures for certain Hénon maps, Invent. Math., 112 (1993), 541-576.
doi: 10.1007/BF01232446. |
[7] |
H. Broer, C. Simó and J. C. Tatjer,
Towards global models near homoclinic tangencies of dissipative diffeomorphisms, Nonlinearity, 11 (1998), 667-770.
doi: 10.1088/0951-7715/11/3/015. |
[8] |
V. V. Bykov,
Orbit Structure in a neighborhood of a separatrix cycle containing two saddle-foci, Translations of the American Mathematical Society - Series 2, 200 (2000), 87-97.
doi: 10.1090/trans2/200/08. |
[9] |
M. L. Castro and A. A. P. Rodrigues,
Torus-breakdown near a heteroclinic attractor: A case study, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 31 (2021), 2130029.
doi: 10.1142/S0218127421300299. |
[10] |
B. Deng,
The shilnikov problem, exponential expansion, strong $\lambda$–lemma, $C^1$ linearisation and homoclinic bifurcation, J. Diff. Eqs., 79 (1989), 189-231.
doi: 10.1016/0022-0396(89)90100-9. |
[11] |
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, 42. Springer-Verlag, New York, 1990.
doi: 10.1007/978-1-4612-1140-2. |
[12] |
M. Hénon,
A two dimensional mapping with a strange attractor, Comm. Math. Phys., 50 (1976), 69-77.
doi: 10.1007/BF01608556. |
[13] |
A. J. Homburg,
Periodic attractors, strange attractors and hyperbolic dynamics near homoclinic orbits to saddle-focus equilibria, Nonlinearity, 15 (2002), 1029-1050.
doi: 10.1088/0951-7715/15/4/304. |
[14] |
A. J. Homburg and B. Sandstede,
Homoclinic and heteroclinic bifurcations in vector fields, Handbook of Dynamical Systems, 3 (2010), 379-524.
doi: 10.1016/S1874-575X(10)00316-4. |
[15] |
M. Jakobson,
Absolutely continuous invariant measures for one parameter families of one-dimensional maps, Comm. Math. Phys., 81 (1981), 39-88.
doi: 10.1007/BF01941800. |
[16] |
I. S. Labouriau and A. A. P. Rodrigues,
Global generic dynamics close to symmetry, J. Diff. Eqs., 253 (2012), 2527-2557.
doi: 10.1016/j.jde.2012.06.009. |
[17] |
I. S. Labouriau and A. A. P. Rodrigues,
Dense heteroclinic tangencies near a Bykov cycle, J. Diff. Eqs., 259 (2015), 5875-5902.
doi: 10.1016/j.jde.2015.07.017. |
[18] |
I. S. Labouriau and A. A. P. Rodrigues,
Global bifurcations close to symmetry, J. Math. Anal. Appl., 444 (2016), 648-671.
doi: 10.1016/j.jmaa.2016.06.032. |
[19] |
A. Mohapatra and W. Ott,
Homoclinic loops, heteroclinic cycles, and rank one dynamics, SIAM J. Appl. Dyn. Syst., 14 (2015), 107-131.
doi: 10.1137/140995659. |
[20] |
L. Mora and M. Viana,
Abundance of strange attractors, Acta Math., 171 (1993), 1-71.
doi: 10.1007/BF02392766. |
[21] |
W. Ott,
Strange attractors in periodically-kicked degenerate Hopf bifurcations, Comm. Math. Phys., 281 (2008), 775-791.
doi: 10.1007/s00220-008-0499-0. |
[22] |
W. Ott and M. Stenlund,
From limit cycles to strange attractors, Comm. Math. Phys., 296 (2010), 215-249.
doi: 10.1007/s00220-010-0994-y. |
[23] |
W. Ott and Q. Wang,
Periodic attractors versus nonuniform expansion in singular limits of families of rank one maps, Discrete Contin. Dyn. Syst., 26 (2010), 1035-1054.
doi: 10.3934/dcds.2010.26.1035. |
[24] |
A. A. P. Rodrigues,
Repelling dynamics near a Bykov cycle, J. Dynam. Differential Equations, 25 (2013), 605-625.
doi: 10.1007/s10884-013-9289-2. |
[25] |
A. A. P. Rodrigues, Unfolding a Bykov attractor: From an attracting torus to strange attractors, J. Dynam. Differential Equations, 2020.
doi: 10.1007/s10884-020-09858-z. |
[26] |
A. A. P. Rodrigues,
Abundance of strange attractors near an attracting periodically perturbed network, SIAM J. Appl. Dyn. Syst., 20 (2021), 541-570.
doi: 10.1137/20M1335510. |
[27] |
A. A. P. Rodrigues, Dissecting a resonance wedge on heteroclinic bifurcations, J. Stat. Phys., 184 (2021), Paper No. 25, 32 pp.
doi: 10.1007/s10955-021-02811-4. |
[28] |
D. Ruelle and F. Takens,
On the nature of turbulence, Commun. Math. Phys., 20 (1971), 167-192.
doi: 10.1007/BF01646553. |
[29] |
A. Shilnikov, G. Nicolis and C. Nicolis,
Bifurcation and predictability analysis of a low-order atmospheric circulation model, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 5 (1995), 1701-1711.
doi: 10.1142/S0218127495001253. |
[30] |
A. Shilnikov, L. Shilnikov and D. Turaev,
On some mathematical topics in classical synchronization: A tutorial, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14 (2004), 2143-2160.
doi: 10.1142/S0218127404010539. |
[31] |
Q. Wang and W. Ott,
Dissipative homoclinic loops of two-dimensional maps and strange attractors with one direction of instability, Comm. Pure Appl. Math., 64 (2011), 1439-1496.
doi: 10.1002/CPA.20379. |
[32] |
Q. Wang and L.-S. Young,
Strange attractors with one direction of instability, Commun. Math. Phys., 218 (2001), 1-97.
doi: 10.1007/s002200100379. |
[33] |
Q. Wang and L.-S. Young,
From invariant curves to strange attractors, Commun. Math. Phys., 225 (2002), 275-304.
doi: 10.1007/s002200100582. |
[34] |
Q. Wang and L.-S. Young,
Strange attractors in periodically-kicked limit cycles and Hopf bifurcations, Commun. Math. Phys., 240 (2003), 509-529.
doi: 10.1007/s00220-003-0902-9. |
[35] |
Q. Wang and L.-S. Young,
Nonuniformly expanding 1D maps, Commun. Math. Phys., 264 (2006), 255-282.
doi: 10.1007/s00220-005-1485-4. |
[36] |
Q. Wang and L.-S. Young,
Toward a theory of rank one attractors, Ann. of Math., 167 (2008), 349-480.
doi: 10.4007/annals.2008.167.349. |
[37] |
Q. Wang and L.-S. Young,
Dynamical profile of a class of rank-one attractors, Ergodic Theory Dynam. Systems, 33 (2013), 1221-1264.
doi: 10.1017/S014338571200020X. |
[38] |
L.-S. Young,
Statistical properties of dynamical systems with some hyperbolicity, Ann. Math., 147 (1998), 585-650.
doi: 10.2307/120960. |






[1] |
Fengjie Geng, Junfang Zhao, Deming Zhu, Weipeng Zhang. Bifurcations of a nongeneric heteroclinic loop with nonhyperbolic equilibria. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 133-145. doi: 10.3934/dcdsb.2013.18.133 |
[2] |
Xianchao Xiu, Lingchen Kong. Rank-one and sparse matrix decomposition for dynamic MRI. Numerical Algebra, Control and Optimization, 2015, 5 (2) : 127-134. doi: 10.3934/naco.2015.5.127 |
[3] |
Ale Jan Homburg. Heteroclinic bifurcations of $\Omega$-stable vector fields on 3-manifolds. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 559-580. doi: 10.3934/dcds.1998.4.559 |
[4] |
Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83 |
[5] |
Masayuki Asaoka. Local rigidity of homogeneous actions of parabolic subgroups of rank-one Lie groups. Journal of Modern Dynamics, 2015, 9: 191-201. doi: 10.3934/jmd.2015.9.191 |
[6] |
Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004 |
[7] |
Hong Seng Sim, Chuei Yee Chen, Wah June Leong, Jiao Li. Nonmonotone spectral gradient method based on memoryless symmetric rank-one update for large-scale unconstrained optimization. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021143 |
[8] |
Thorsten Riess. Numerical study of secondary heteroclinic bifurcations near non-reversible homoclinic snaking. Conference Publications, 2011, 2011 (Special) : 1244-1253. doi: 10.3934/proc.2011.2011.1244 |
[9] |
Jihua Yang, Erli Zhang, Mei Liu. Limit cycle bifurcations of a piecewise smooth Hamiltonian system with a generalized heteroclinic loop through a cusp. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2321-2336. doi: 10.3934/cpaa.2017114 |
[10] |
Wenjun Zhang, Bernd Krauskopf, Vivien Kirk. How to find a codimension-one heteroclinic cycle between two periodic orbits. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2825-2851. doi: 10.3934/dcds.2012.32.2825 |
[11] |
Flaviano Battelli, Ken Palmer. Heteroclinic connections in singularly perturbed systems. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 431-461. doi: 10.3934/dcdsb.2008.9.431 |
[12] |
Eleonora Catsigeras, Marcelo Cerminara, Heber Enrich. Simultaneous continuation of infinitely many sinks at homoclinic bifurcations. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 693-736. doi: 10.3934/dcds.2011.29.693 |
[13] |
Hunseok Kang. Dynamics of local map of a discrete Brusselator model: eventually trapping regions and strange attractors. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 939-959. doi: 10.3934/dcds.2008.20.939 |
[14] |
Thorsten Hüls, Yongkui Zou. On computing heteroclinic trajectories of non-autonomous maps. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 79-99. doi: 10.3934/dcdsb.2012.17.79 |
[15] |
Maria Carvalho, Alexander Lohse, Alexandre A. P. Rodrigues. Moduli of stability for heteroclinic cycles of periodic solutions. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6541-6564. doi: 10.3934/dcds.2019284 |
[16] |
Zhanyuan Hou, Stephen Baigent. Heteroclinic limit cycles in competitive Kolmogorov systems. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4071-4093. doi: 10.3934/dcds.2013.33.4071 |
[17] |
Christopher K. R. T. Jones, Siu-Kei Tin. Generalized exchange lemmas and orbits heteroclinic to invariant manifolds. Discrete and Continuous Dynamical Systems - S, 2009, 2 (4) : 967-1023. doi: 10.3934/dcdss.2009.2.967 |
[18] |
Héctor E. Lomelí. Heteroclinic orbits and rotation sets for twist maps. Discrete and Continuous Dynamical Systems, 2006, 14 (2) : 343-354. doi: 10.3934/dcds.2006.14.343 |
[19] |
Fei Liu, Jaume Llibre, Xiang Zhang. Heteroclinic orbits for a class of Hamiltonian systems on Riemannian manifolds. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1097-1111. doi: 10.3934/dcds.2011.29.1097 |
[20] |
Àlex Haro. On strange attractors in a class of pinched skew products. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 605-617. doi: 10.3934/dcds.2012.32.605 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]