\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Cucker-Smale model with time delay

Abstract Full Text(HTML) Figure(3) Related Papers Cited by
  • We study the flocking model for continuous time introduced by Cucker and Smale adding a positive time delay $ \tau $. The goal of this article is to prove that the same unconditional flocking result for the non-delayed case is valid in the delayed case. A novelty is that we do not need to impose any restriction on the size of $ \tau $. Furthermore, when the unconditional flocking occurs, velocities converge exponentially fast to a common one.

    Mathematics Subject Classification: 93D20, 34K25, 92D50.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 3.  We plot two simulations using system 33. The imagines at the top represent the case of $ 4 $ particles with $ K = 5 $. The imagines at the bottom represent the case of $ 20 $ particles with $ K = 25 $. The black solid lines show the center of positions $ x_{\bf{c}} $ (left imagines) and the center of velocities $ v_{\bf{c}} $ (right imagines). In both cases we set $ \Delta t = 1/1000 $, $ \tau = 1 $ and the initial conditions are constant in the velocities, satisfying $ (d/dt) x^{(a)}_0 = v^{(a)}_0 $ for each $ a\in A $

    Figure 1.  Numerical simulation of Example 4.1. We use system 33 and set $ \tau = 1 $, $ \Delta t = 1/1000 $, $ N = 2 $ and $ K = 1 $

    Figure 2.  Numerical simulation of Example 4.2 with $ \tau = 1 $ and $ \varepsilon = 0.2 $. We use system 33 setting $ \Delta t = 1/1000 $, $ N = 2 $ and $ K = 1 $

  • [1] S. AhnH.-O. BaeS.-Y. HaY. Kim and H. Lim, Application of flocking mechanism to the modeling of stochastic volatility, Math. Models Methods Appl. Sci., 23 (2013), 1603-1628.  doi: 10.1142/S0218202513500176.
    [2] J. A. CarrilloM. FornasierJ. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker–Smale model, SIAM J. Math. Anal., 42 (2010), 218-236.  doi: 10.1137/090757290.
    [3] Y.-P. ChoiS.-Y. Ha and Z. Li, Emergent dynamics of the cucker–smale flocking model and its variants, Active Particles, 1 (2017), 299-331. 
    [4] Y. P. Choi and J. Haskovec, Cucker-Smale model with normalized communication weights and time delay, Kinet. Relat. Models, 10 (2017), 1011-1033.  doi: 10.3934/krm.2017040.
    [5] Y.-P. Choi and Z. Li, Emergent behavior of Cucker–Smale flocking particles with heterogeneous time delays, Appl. Math. Lett., 86 (2018), 49-56.  doi: 10.1016/j.aml.2018.06.018.
    [6] Y.-L. Chuang, Y. R. Huang, M. R. D'Orsogna and A. L. Bertozzi, Multi-vehicle flocking: Scalability of cooperative control algorithms using pairwise potentials, Proceedings 2007 IEEE International Conference on Robotics and Automation, (2007), 2292–2299. doi: 10.1109/ROBOT.2007.363661.
    [7] F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.
    [8] F. Cucker and S. Smale, On the mathematics of emergence, Jpn. J. Math., 2 (2007), 197-227.  doi: 10.1007/s11537-007-0647-x.
    [9] F. CuckerS. Smale and D.-X. Zhou, Modeling language evolution, Found. Comput. Math., 4 (2004), 315-343.  doi: 10.1007/s10208-003-0101-2.
    [10] J.-G. DongS.-Y. Ha and D. Kim, Interplay of time-delay and velocity alignment in the Cucker-Smale model on a general digraph, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 5569-5596.  doi: 10.3934/dcdsb.2019072.
    [11] R. ErbanJ. Haskovec and Y. Sun, A cucker–smale model with noise and delay, SIAM J. Appl. Math., 76 (2016), 1535-1557.  doi: 10.1137/15M1030467.
    [12] S.-Y. Ha and D. Levy, Particle, kinetic and fluid models for phototaxis, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 77-108.  doi: 10.3934/dcdsb.2009.12.77.
    [13] S.-Y. Ha and J.-G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297-325.  doi: 10.4310/CMS.2009.v7.n2.a2.
    [14] S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models, 1 (2008), 415-435.  doi: 10.3934/krm.2008.1.415.
    [15] J. Haskovec, Direct proof of unconditional asymptotic consensus in the Hegselmann–Krause model with transmission-type delay, Bull. Lond. Math. Soc., 53 (2021), 1312-1323.  doi: 10.1112/blms.12497.
    [16] J. Haskovec, A simple proof of asymptotic consensus in the Hegselmann–krause and Cucker–smale models with normalization and delay, SIAM J. Appl. Dyn. Syst., 20 (2021), 130-148.  doi: 10.1137/20M1341350.
    [17] J. Haskovec, Well posedness and asymptotic consensus in the Hegselmann-Krause model with finite speed of information propagation, Proc. Amer. Math. Soc., 149 (2021), 3425-3437.  doi: 10.1090/proc/15522.
    [18] R. Hegselmann, U. Krause and et al., Opinion dynamics and bounded confidence models, analysis, and simulation, Journal of Artificial Societies and Social Simulation, 5 (2002).
    [19] V. Kolmanovskii and A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Mathematics and its Applications, 463. Kluwer Academic Publishers, Dordrecht, 1999. doi: 10.1007/978-94-017-1965-0.
    [20] Y. Liu and J. Wu, Flocking and asymptotic velocity of the Cucker–Smale model with processing delay, J. Math. Anal. Appl., 415 (2014), 53-61.  doi: 10.1016/j.jmaa.2014.01.036.
    [21] S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 144 (2011), 923-947.  doi: 10.1007/s10955-011-0285-9.
    [22] S.-I. Niculescu, Delay Effects on Stability: A Robust Control Approach, Lecture Notes in Control and Information Sciences, 269. Springer-Verlag London, Ltd., London, 2001.
    [23] R. Olfati-Saber, Flocking for multi-agent dynamic systems: Algorithms and theory, IEEE Trans. Automat. Control, 51 (2006), 401-420.  doi: 10.1109/TAC.2005.864190.
    [24] J. ParkH. J. Kim and S.-Y. Ha, Cucker-Smale flocking with inter-particle bonding forces, IEEE Trans. Automat. Control, 55 (2010), 2617-2623.  doi: 10.1109/TAC.2010.2061070.
    [25] C. Pignotti and E. Trélat, Convergence to consensus of the general finite-dimensional Cucker-Smale model with time-varying delays, Commun. Math. Sci., 16 (2018), 2053-2076.  doi: 10.4310/CMS.2018.v16.n8.a1.
    [26] C. Pignotti and I. R. Vallejo, Flocking estimates for the Cucker–Smale model with time lag and hierarchical leadership, J. Math. Anal. Appl., 464 (2018), 1313-1332.  doi: 10.1016/j.jmaa.2018.04.070.
    [27] J. P. PinascoM. Rodriguez Cartabia and N. Saintier, Interacting particles systems with delay and random delay differential equations, Nonlinear Anal., 214 (2022), 112524.  doi: 10.1016/j.na.2021.112524.
    [28] C. W. Reynolds, Flocks, herds and schools: A distributed behavioral model, Seminal Graphics: Pioneering Efforts That Shaped the Field, (1998), 273–282. doi: 10.1145/280811.281008.
    [29] J. Shen, Cucker–Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2007/08), 694-719.  doi: 10.1137/060673254.
    [30] D. J. SumpterCollective Animal Behavior, Princeton University Press, 2010. 
    [31] T. VicsekA. CzirókE. Ben-JacobI. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.  doi: 10.1103/PhysRevLett.75.1226.
    [32] T. Vicsek and A. Zafeiris, Collective motion, Physics Reports, 517 (2012), 71-140.  doi: 10.1016/j.physrep.2012.03.004.
  • 加载中

Figures(3)

SHARE

Article Metrics

HTML views(750) PDF downloads(248) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return