-
Previous Article
On the multifractal spectrum of weighted Birkhoff averages
- DCDS Home
- This Issue
-
Next Article
Shadowing as a structural property of the space of dynamical systems
A regularization-free approach to the Cahn-Hilliard equation with logarithmic potentials
SUSTech International Center for Mathematics, and Department of Mathematics, Southern University of Science and Technology, Shenzhen, 518055, China |
We introduce a regularization-free approach for the wellposedness of the classic Cahn-Hilliard equation with logarithmic potentials.
References:
[1] |
H. Abels and M. Wilke,
Convergence to equilibrium for the Cahn-Hilliard equation with a logarithmic free energy, Nonlinear Anal., 67 (2007), 3176-3193.
doi: 10.1016/j.na.2006.10.002. |
[2] |
P. W. Bates, P. C. Fife, X. Ren and X. Wang,
Traveling waves in a convolution model for phase transitions, Arch. Rational Mech. Anal., 138 (1997), 105-136.
doi: 10.1007/s002050050037. |
[3] |
P. W. Bates and J. Han,
The Neumann boundary problem for a nonlocal Cahn-Hilliard equation, J. Differential Equations, 212 (2005), 235-277.
doi: 10.1016/j.jde.2004.07.003. |
[4] |
J. W. Cahn and J. E. Hilliard,
Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.
doi: 10.1063/1.1744102. |
[5] |
L. Cherfils, A. Miranville and S. Zelik,
The Cahn-Hilliard equation with logarithmic potentials, Milan J. Math., 79 (2011), 561-596.
doi: 10.1007/s00032-011-0165-4. |
[6] |
M. Copetti and C. Elliott,
Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy, Numer. Math., 63 (1992), 39-65.
doi: 10.1007/BF01385847. |
[7] |
A. Debussche and L. Dettori,
On the Cahn-Hilliard equation with a logarithmic free energy, Nonlinear Anal., 24 (1995), 1491-1514.
doi: 10.1016/0362-546X(94)00205-V. |
[8] |
C. M. Elliott and S. Luckhaus, A generalized Diffusion Equation for Phase Separation of A Multi-Component Mixture with Interfacial Energy, SFB 256 Preprint No. 195, University of Bonn, 1991. |
[9] |
H. Gajewski and K. Zacharias,
On a nonlocal phase separation model, J. Math. Anal. Appl., 286 (2003), 11-31.
doi: 10.1016/S0022-247X(02)00425-0. |
[10] |
G. Giacomin and J. L. Lebowitz,
Phase segregation dynamics in particle systems with long range interaction I. Macroscopic limits, J. Statist. Phys., 87 (1997), 37-61.
doi: 10.1007/BF02181479. |
[11] |
G. Giacomin and J. L. Lebowitz,
Phase segregation dynamics in particle systems with long range interaction II. Interface motion, SIAM J. Appl. Math., 58 (1998), 1707-1729.
doi: 10.1137/S0036139996313046. |
[12] |
N. Kenmochi, M. Niezgódka and I. Pawlow,
Subdifferential operator approach to the Cahn-Hilliard equation with constraint, J. Differential Equations, 117 (1995), 320-356.
doi: 10.1006/jdeq.1995.1056. |
[13] |
D. Li,
Effective maximum principles for spectral methods, Ann. Appl. Math., 37 (2021), 131-290.
doi: 10.4208/aam.OA-2021-0003. |
[14] |
D. Li, C. Quan and T. Tang, Stability and convergence analysis for the implicit-explicit discretization of the Cahn-Hilliard equation, to appear in Math. Comp., arXiv: 2008.03701. |
[15] |
D. Li and T. Tang,
Stability of the semi-implicit method for the cahn-hilliard equation with logarithmic potentials, Ann. Appl. Math., 37 (2021), 31-60.
doi: 10.4208/aam.OA-2020-0003. |
[16] |
A. Miranville and S. Zelik,
Robust exponential attractors for Cahn-Hilliard type equations with singular potentials, Math. Methods Appl. Sci., 27 (2004), 545-582.
doi: 10.1002/mma.464. |
show all references
References:
[1] |
H. Abels and M. Wilke,
Convergence to equilibrium for the Cahn-Hilliard equation with a logarithmic free energy, Nonlinear Anal., 67 (2007), 3176-3193.
doi: 10.1016/j.na.2006.10.002. |
[2] |
P. W. Bates, P. C. Fife, X. Ren and X. Wang,
Traveling waves in a convolution model for phase transitions, Arch. Rational Mech. Anal., 138 (1997), 105-136.
doi: 10.1007/s002050050037. |
[3] |
P. W. Bates and J. Han,
The Neumann boundary problem for a nonlocal Cahn-Hilliard equation, J. Differential Equations, 212 (2005), 235-277.
doi: 10.1016/j.jde.2004.07.003. |
[4] |
J. W. Cahn and J. E. Hilliard,
Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.
doi: 10.1063/1.1744102. |
[5] |
L. Cherfils, A. Miranville and S. Zelik,
The Cahn-Hilliard equation with logarithmic potentials, Milan J. Math., 79 (2011), 561-596.
doi: 10.1007/s00032-011-0165-4. |
[6] |
M. Copetti and C. Elliott,
Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy, Numer. Math., 63 (1992), 39-65.
doi: 10.1007/BF01385847. |
[7] |
A. Debussche and L. Dettori,
On the Cahn-Hilliard equation with a logarithmic free energy, Nonlinear Anal., 24 (1995), 1491-1514.
doi: 10.1016/0362-546X(94)00205-V. |
[8] |
C. M. Elliott and S. Luckhaus, A generalized Diffusion Equation for Phase Separation of A Multi-Component Mixture with Interfacial Energy, SFB 256 Preprint No. 195, University of Bonn, 1991. |
[9] |
H. Gajewski and K. Zacharias,
On a nonlocal phase separation model, J. Math. Anal. Appl., 286 (2003), 11-31.
doi: 10.1016/S0022-247X(02)00425-0. |
[10] |
G. Giacomin and J. L. Lebowitz,
Phase segregation dynamics in particle systems with long range interaction I. Macroscopic limits, J. Statist. Phys., 87 (1997), 37-61.
doi: 10.1007/BF02181479. |
[11] |
G. Giacomin and J. L. Lebowitz,
Phase segregation dynamics in particle systems with long range interaction II. Interface motion, SIAM J. Appl. Math., 58 (1998), 1707-1729.
doi: 10.1137/S0036139996313046. |
[12] |
N. Kenmochi, M. Niezgódka and I. Pawlow,
Subdifferential operator approach to the Cahn-Hilliard equation with constraint, J. Differential Equations, 117 (1995), 320-356.
doi: 10.1006/jdeq.1995.1056. |
[13] |
D. Li,
Effective maximum principles for spectral methods, Ann. Appl. Math., 37 (2021), 131-290.
doi: 10.4208/aam.OA-2021-0003. |
[14] |
D. Li, C. Quan and T. Tang, Stability and convergence analysis for the implicit-explicit discretization of the Cahn-Hilliard equation, to appear in Math. Comp., arXiv: 2008.03701. |
[15] |
D. Li and T. Tang,
Stability of the semi-implicit method for the cahn-hilliard equation with logarithmic potentials, Ann. Appl. Math., 37 (2021), 31-60.
doi: 10.4208/aam.OA-2020-0003. |
[16] |
A. Miranville and S. Zelik,
Robust exponential attractors for Cahn-Hilliard type equations with singular potentials, Math. Methods Appl. Sci., 27 (2004), 545-582.
doi: 10.1002/mma.464. |
[1] |
Kelong Cheng, Cheng Wang, Steven M. Wise, Zixia Yuan. Global-in-time Gevrey regularity solutions for the functionalized Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2211-2229. doi: 10.3934/dcdss.2020186 |
[2] |
Xinlong Feng, Yinnian He. On uniform in time $H^2$-regularity of the solution for the 2D Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5387-5400. doi: 10.3934/dcds.2016037 |
[3] |
Erica Ipocoana, Andrea Zafferi. Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation. Communications on Pure and Applied Analysis, 2021, 20 (2) : 763-782. doi: 10.3934/cpaa.2020289 |
[4] |
Sergey Zelik, Jon Pennant. Global well-posedness in uniformly local spaces for the Cahn-Hilliard equation in $\mathbb{R}^3$. Communications on Pure and Applied Analysis, 2013, 12 (1) : 461-480. doi: 10.3934/cpaa.2013.12.461 |
[5] |
Irena Pawłow, Wojciech M. Zajączkowski. The global solvability of a sixth order Cahn-Hilliard type equation via the Bäcklund transformation. Communications on Pure and Applied Analysis, 2014, 13 (2) : 859-880. doi: 10.3934/cpaa.2014.13.859 |
[6] |
Ciprian G. Gal, Maurizio Grasselli. Longtime behavior of nonlocal Cahn-Hilliard equations. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 145-179. doi: 10.3934/dcds.2014.34.145 |
[7] |
Alain Miranville. Existence of solutions for Cahn-Hilliard type equations. Conference Publications, 2003, 2003 (Special) : 630-637. doi: 10.3934/proc.2003.2003.630 |
[8] |
Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207 |
[9] |
Laurence Cherfils, Alain Miranville, Sergey Zelik. On a generalized Cahn-Hilliard equation with biological applications. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2013-2026. doi: 10.3934/dcdsb.2014.19.2013 |
[10] |
Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 801-827. doi: 10.3934/dcds.2017033 |
[11] |
Quan Wang, Dongming Yan. On the stability and transition of the Cahn-Hilliard/Allen-Cahn system. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2607-2620. doi: 10.3934/dcdsb.2020024 |
[12] |
Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127 |
[13] |
Christopher P. Grant. Grain sizes in the discrete Allen-Cahn and Cahn-Hilliard equations. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 127-146. doi: 10.3934/dcds.2001.7.127 |
[14] |
Alain Miranville, Ramon Quintanilla, Wafa Saoud. Asymptotic behavior of a Cahn-Hilliard/Allen-Cahn system with temperature. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2257-2288. doi: 10.3934/cpaa.2020099 |
[15] |
Shixing Li, Dongming Yan. On the steady state bifurcation of the Cahn-Hilliard/Allen-Cahn system. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3077-3088. doi: 10.3934/dcdsb.2018301 |
[16] |
Jie Shen, Xiaofeng Yang. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1669-1691. doi: 10.3934/dcds.2010.28.1669 |
[17] |
Alain Miranville, Wafa Saoud, Raafat Talhouk. On the Cahn-Hilliard/Allen-Cahn equations with singular potentials. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3633-3651. doi: 10.3934/dcdsb.2018308 |
[18] |
Elena Bonetti, Pierluigi Colli, Luca Scarpa, Giuseppe Tomassetti. A doubly nonlinear Cahn-Hilliard system with nonlinear viscosity. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1001-1022. doi: 10.3934/cpaa.2018049 |
[19] |
Dirk Blömker, Bernhard Gawron, Thomas Wanner. Nucleation in the one-dimensional stochastic Cahn-Hilliard model. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 25-52. doi: 10.3934/dcds.2010.27.25 |
[20] |
Tomáš Roubíček. Cahn-Hilliard equation with capillarity in actual deforming configurations. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 41-55. doi: 10.3934/dcdss.2020303 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]