
-
Previous Article
On the density of certain spectral points for a class of $ C^{2} $ quasiperiodic Schrödinger cocycles
- DCDS Home
- This Issue
-
Next Article
On the multifractal spectrum of weighted Birkhoff averages
Stability, free energy and dynamics of multi-spikes in the minimal Keller-Segel model
Department of Mathematics, Southwestern University of Finance and Economics, 555 Liutai Ave, Wenjiang, Chengdu, Sichuan 611130, China |
One of the most impressive findings in chemotaxis is the aggregation that randomly distributed bacteria, when starved, release a diffusive chemical to attract and group with others to form one or several stable aggregates in a long time. This paper considers pattern formation within the minimal Keller–Segel chemotaxis model with a focus on the stability and dynamics of its multi-spike steady states. We first show that any steady-state must be a periodic replication of the spatially monotone one and they present multi-spikes when the chemotaxis rate is large; moreover, we prove that all the multi-spikes are unstable through their refined asymptotic profiles, and then find a fully-fledged hierarchy of free entropy energy of these aggregates. Our results also complement the literature by finding that when the chemotaxis is strong, the single boundary spike has the least energy hence is the most stable, the steady-state with more spikes has larger free energy, while the constant has the largest free energy and is always unstable. These results provide new insights into the model's intricate global dynamics, and they are illustrated and complemented by numerical studies which also demonstrate the metastability and phase transition behavior in chemotactic movement.
References:
[1] |
A. Buttenschön and T. Hillen, Non-local cell adhesion models: Steady states and bifurcations, preprint, https://arXiv.org/abs/2001.00286. |
[2] |
J. A. Carrillo, X. Chen, Q. Wang, Z. Wang and L. Zhang,
Phase transitions and bump solutions of the Keller–Segel model with volume exclusion, SIAM J. Appl. Math., 80 (2020), 232-261.
doi: 10.1137/19M125827X. |
[3] |
J. A. Carrillo, J. Li and Z. Wang,
Boundary spike-layer solutions of the singular Keller–Segel system: Existence and stability, Proc. London Math. Soc., 122 (2021), 42-68.
doi: 10.1112/plms.12319. |
[4] |
X. Chen, J. Hao, X. Wang, Y. Wu and Y. Zhang,
Stability of spiky solution of Keller–Segel's minimal chemotaxis model, J. Differential Equations, 257 (2014), 3102-3134.
doi: 10.1016/j.jde.2014.06.008. |
[5] |
L. Chen, F. Kong and Q. Wang,
Stationary ring and concentric-ring solutions of the Keller–Segel model with quadratic diffusion, SIAM J. Math. Anal., 52 (2020), 4565-4615.
doi: 10.1137/19M1298998. |
[6] |
L. Chen, F. Kong and Q. Wang,
Global and exponential attractor of the repulsive Keller–Segel model with logarithmic sensitivity, European J. Appl. Math., 32 (2021), 599-617.
doi: 10.1017/S0956792520000194. |
[7] |
A. Chertock, A. Kurganov, X. Wang and Y. Wu,
On a chemotaxis model with saturated chemotactic flux, Kinet. Relat. Models, 5 (2012), 51-95.
doi: 10.3934/krm.2012.5.51. |
[8] |
S. Childress and J. Percus,
Nonlinear aspects of chemotaxis, Math. Biosci., 56 (1981), 217-237.
doi: 10.1016/0025-5564(81)90055-9. |
[9] |
T. Cieślak, P. Laurençot and C. Morales-Rodrigo,
Global existence and convergence to steady states in a chemorepulsion system, Banach Center Publications, 81 (2008), 105-117.
doi: 10.4064/bc81-0-7. |
[10] |
M. Crandall and P. Rabinowitz,
Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340.
doi: 10.1016/0022-1236(71)90015-2. |
[11] |
M. del Pino, F. Mahmoudi and M. Musso,
Bubbling on boundary submanifolds for the Lin–Ni–Takagi problem at higher critical exponents, J. Eur. Math. Soc., 16 (2014), 1687-1748.
doi: 10.4171/JEMS/473. |
[12] |
M. del Pino and J. Wei,
Collapsing steady states of the Keller–Segel system, Nonlinearity, 19 (2006), 661-684.
doi: 10.1088/0951-7715/19/3/007. |
[13] |
E. Feireisl, P. Laurençot and H. Petzeltová,
On convergence to equilibria for the Keller–Segel chemotaxis model, J. Differential Equations, 236 (2007), 551-569.
doi: 10.1016/j.jde.2007.02.002. |
[14] |
Y. Gu, Q. Wang and G. Yi,
Stationary patterns and their selection mechanism of urban crime models with heterogeneous near-repeat victimization effect, European J. Appl. Math., 28 (2017), 141-178.
doi: 10.1017/S0956792516000206. |
[15] |
C. Gui,
Multipeak solutions for a semilinear Neumann problem, Duke Math. J., 84 (1996), 739-769.
doi: 10.1215/S0012-7094-96-08423-9. |
[16] |
C. Gui and J. Wei,
Multiple interior peak solutions for some singularly perturbed Neumann problems, J. Differential Equations, 158 (1999), 1-27.
doi: 10.1016/S0022-0396(99)80016-3. |
[17] |
M. A. Herrero and J. J. L. Velázquez,
Chemotactic collapse for the Keller–Segel model, J. Math. Biol., 35 (1996), 177-194.
doi: 10.1007/s002850050049. |
[18] |
T. Hillen and K. J. Painter,
A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.
doi: 10.1007/s00285-008-0201-3. |
[19] |
D. Horstmann and M. Winkler,
Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.
doi: 10.1016/j.jde.2004.10.022. |
[20] |
J. Jiang,
On a repulsion Keller–Segel system with a logarithmic sensitivity, European J. Appl. Math., (2021), 1-29.
doi: 10.1017/S0956792520000443. |
[21] |
K. Kang, T. Kolokolnikov and M. Ward,
The stability and dynamics of a spike in 1D Keller–Segel model, IMA J. Appl. Math., 72 (2007), 140-162.
doi: 10.1093/imamat/hxl028. |
[22] |
G. Karch and K. Suzuki,
Spikes and diffusion waves in a one-dimensional model of chemotaxis, Nonlinearity, 23 (2010), 3119-3137.
doi: 10.1088/0951-7715/23/12/007. |
[23] |
E. F. Keller and L. A. Segel,
Initiation of slime mold aggregation view as an instability, J. Theoret. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[24] |
E. F. Keller and L. A. Segel,
Model for chemotaxis, J. Theoret. Biol., 30 (1971), 225-234.
doi: 10.1016/0022-5193(71)90050-6. |
[25] |
E. F. Keller and L. A. Segel,
Traveling bands of chemotactic bacteria: A theoretical analysis, J. Theoret. Biol., 30 (1971), 235-248.
doi: 10.1016/0022-5193(71)90051-8. |
[26] |
T. Kolokolnikov, J. Wei and A. Alcolado,
Basic mechanisms driving complex spike dynamics in a chemotaxis model with logistic growth, SIAM J. Appl. Math., 74 (2014), 1375-1396.
doi: 10.1137/130914851. |
[27] |
K. Kurata and K. Morimoto,
Existence of multiple spike stationary patterns in a chemotaxis model with weak saturation, Discrete Contin. Dyn. Syst., 31 (2011), 139-164.
doi: 10.3934/dcds.2011.31.139. |
[28] |
X. Lai, X. Chen, C. Qin and Y. Zhang,
Existence, uniqueness and stability of steady state solution of chemotaxis model, Discrete Contin. Dyn. Syst., 36 (2016), 805-832.
doi: 10.3934/dcds.2016.36.805. |
[29] |
H. Li,
Spiky steady states of a chemotaxis system with singular sensitivity, J. Dyn. Differential Equations, 30 (2018), 1775-1795.
doi: 10.1007/s10884-017-9621-3. |
[30] |
C.-S. Lin, W.-M. Ni and I. Takagi,
Large amplitute stationary solutions to a chemotaxis system, J. Differential Equations, 72 (1988), 1-27.
doi: 10.1016/0022-0396(88)90147-7. |
[31] |
F.-H. Lin, W.-M. Ni and J. Wei,
On the number of interior peak solutions for a singularly perturbed Neumann problem, Comm. Pure Appl. Math., 60 (2007), 252-281.
doi: 10.1002/cpa.20139. |
[32] |
V. Nanjundiah,
Chemotaxis, signal relaying and aggregation morphology, J. Theor. Biol., 42 (1973), 63-105.
doi: 10.1016/0022-5193(73)90149-5. |
[33] |
W.-M. Ni and I. Takagi,
On the shape of least enery solutions to a semilinear Neumann problem, Comm. Pure Appl. Math., 44 (1991), 819-851.
doi: 10.1002/cpa.3160440705. |
[34] |
W.-M. Ni and I. Takagi,
Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J., 70 (1993), 247-281.
doi: 10.1215/S0012-7094-93-07004-4. |
[35] |
J. Pejsachowicz and P. J. Rabier,
Degree theory for $C^1$ Fredholm mappings of index 0, J. Anal. Math., 76 (1998), 289-319.
doi: 10.1007/BF02786939. |
[36] |
P. Rabinowitz,
Some global results for nonlinear eigenvalue problems, J. Functional Analysis, 7 (1971), 487-513.
doi: 10.1016/0022-1236(71)90030-9. |
[37] |
R. Schaaf,
Stationary solutions of chemotaxis systems, Trans. Amer. Math. Soc., 292 (1985), 531-556.
doi: 10.1090/S0002-9947-1985-0808736-1. |
[38] |
J. Shi and X. Wang,
On global bifurcation for quasilinear elliptic systems on bounded domains, J. Differential Equations, 246 (2009), 2788-2812.
doi: 10.1016/j.jde.2008.09.009. |
[39] |
B. Sleeman, M. Ward and J. Wei,
The existence and stability of spike patterns in a chemotaxis model, SIAM J. Appl. Math., 65 (2005), 790-817.
doi: 10.1137/S0036139902415117. |
[40] |
Q. Wang,
Boundary spikes of a Keller–Segel chemotaxis system with saturated logarithmic sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 1231-1250.
doi: 10.3934/dcdsb.2015.20.1231. |
[41] |
Q. Wang, C. Gai and J. Yan,
Qualitative analysis of a Lotka–Volterra competition system with advection, Discrete Contin. Dyn. Syst., 35 (2015), 1239-1284.
doi: 10.3934/dcds.2015.35.1239. |
[42] |
Q. Wang, Y. Song and L. Shao,
Nonconstant positive steady states and pattern formation of 1D prey-taxis systems, J. Nonlinear Sci., 27 (2017), 71-97.
doi: 10.1007/s00332-016-9326-5. |
[43] |
Q. Wang, J. Yan and C. Gai, Qualitative analysis of stationary Keller–Segel chemotaxis models with logistic growth, Z. Angew. Math. Phys., 67 (2016), Art. 51, 25 pp.
doi: 10.1007/s00033-016-0648-9. |
[44] |
Q. Wang, J. Yang and L. Zhang,
Time periodic and stable patterns of a two-competing-species Keller–Segel chemotaxis model: Effect of cellular growth, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 3547-3574.
doi: 10.3934/dcdsb.2017179. |
[45] |
Q. Wang, L. Zhang, J. Yang and J. Hu,
Global existence and steady states of a two competing species Keller–Segel chemotaxis model, Kinet. Relat. Models, 8 (2015), 777-807.
doi: 10.3934/krm.2015.8.777. |
[46] |
X. Wang,
Qualitative behavior of solutions of chemotactic diffusion systems: Effects of motility and chemotaxis and dynamics, SIAM J. Math. Anal., 31 (2000), 535-560.
doi: 10.1137/S0036141098339897. |
[47] |
X. Wang and Q. Xu,
Spiky and transition layer steady states of chemotaxis systems via global bifurcation and Helly's compactness theorem, J. Math. Biol., 66 (2013), 1241-1266.
doi: 10.1007/s00285-012-0533-x. |
[48] |
J. Wei,
On the boundary spike layer solutions of a singularly perturbed semilinear Neumann problem, J. Differential Equations, 134 (1997), 104-133.
doi: 10.1006/jdeq.1996.3218. |
[49] |
Y. Zhang, X. Chen, J. Hao, X. Lai and C. Qin,
An eigenvalue problem arising from spiky steady states of a minimal chemotaxis model, J. Math. Anal. Appl., 420 (2014), 684-704.
doi: 10.1016/j.jmaa.2014.06.005. |
[50] |
Y. Zhang, X. Chen, J. Hao, X. Lai and C. Qin,
Dynamics of spike in a Keller–Segel's minimal chemotaxis model, Discrete Contin. Dyn. Syst., 37 (2017), 1109-1127.
doi: 10.3934/dcds.2017046. |
[51] |
Y. Zhang, X. Chen, J. Hao, X. Lai and C. Qin,
Spectral analysis for stability of bubble steady states of a Keller–Segel's minimal chemotaxis model, J. Math. Anal. Appl., 446 (2017), 1105-1132.
doi: 10.1016/j.jmaa.2016.09.034. |
show all references
References:
[1] |
A. Buttenschön and T. Hillen, Non-local cell adhesion models: Steady states and bifurcations, preprint, https://arXiv.org/abs/2001.00286. |
[2] |
J. A. Carrillo, X. Chen, Q. Wang, Z. Wang and L. Zhang,
Phase transitions and bump solutions of the Keller–Segel model with volume exclusion, SIAM J. Appl. Math., 80 (2020), 232-261.
doi: 10.1137/19M125827X. |
[3] |
J. A. Carrillo, J. Li and Z. Wang,
Boundary spike-layer solutions of the singular Keller–Segel system: Existence and stability, Proc. London Math. Soc., 122 (2021), 42-68.
doi: 10.1112/plms.12319. |
[4] |
X. Chen, J. Hao, X. Wang, Y. Wu and Y. Zhang,
Stability of spiky solution of Keller–Segel's minimal chemotaxis model, J. Differential Equations, 257 (2014), 3102-3134.
doi: 10.1016/j.jde.2014.06.008. |
[5] |
L. Chen, F. Kong and Q. Wang,
Stationary ring and concentric-ring solutions of the Keller–Segel model with quadratic diffusion, SIAM J. Math. Anal., 52 (2020), 4565-4615.
doi: 10.1137/19M1298998. |
[6] |
L. Chen, F. Kong and Q. Wang,
Global and exponential attractor of the repulsive Keller–Segel model with logarithmic sensitivity, European J. Appl. Math., 32 (2021), 599-617.
doi: 10.1017/S0956792520000194. |
[7] |
A. Chertock, A. Kurganov, X. Wang and Y. Wu,
On a chemotaxis model with saturated chemotactic flux, Kinet. Relat. Models, 5 (2012), 51-95.
doi: 10.3934/krm.2012.5.51. |
[8] |
S. Childress and J. Percus,
Nonlinear aspects of chemotaxis, Math. Biosci., 56 (1981), 217-237.
doi: 10.1016/0025-5564(81)90055-9. |
[9] |
T. Cieślak, P. Laurençot and C. Morales-Rodrigo,
Global existence and convergence to steady states in a chemorepulsion system, Banach Center Publications, 81 (2008), 105-117.
doi: 10.4064/bc81-0-7. |
[10] |
M. Crandall and P. Rabinowitz,
Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340.
doi: 10.1016/0022-1236(71)90015-2. |
[11] |
M. del Pino, F. Mahmoudi and M. Musso,
Bubbling on boundary submanifolds for the Lin–Ni–Takagi problem at higher critical exponents, J. Eur. Math. Soc., 16 (2014), 1687-1748.
doi: 10.4171/JEMS/473. |
[12] |
M. del Pino and J. Wei,
Collapsing steady states of the Keller–Segel system, Nonlinearity, 19 (2006), 661-684.
doi: 10.1088/0951-7715/19/3/007. |
[13] |
E. Feireisl, P. Laurençot and H. Petzeltová,
On convergence to equilibria for the Keller–Segel chemotaxis model, J. Differential Equations, 236 (2007), 551-569.
doi: 10.1016/j.jde.2007.02.002. |
[14] |
Y. Gu, Q. Wang and G. Yi,
Stationary patterns and their selection mechanism of urban crime models with heterogeneous near-repeat victimization effect, European J. Appl. Math., 28 (2017), 141-178.
doi: 10.1017/S0956792516000206. |
[15] |
C. Gui,
Multipeak solutions for a semilinear Neumann problem, Duke Math. J., 84 (1996), 739-769.
doi: 10.1215/S0012-7094-96-08423-9. |
[16] |
C. Gui and J. Wei,
Multiple interior peak solutions for some singularly perturbed Neumann problems, J. Differential Equations, 158 (1999), 1-27.
doi: 10.1016/S0022-0396(99)80016-3. |
[17] |
M. A. Herrero and J. J. L. Velázquez,
Chemotactic collapse for the Keller–Segel model, J. Math. Biol., 35 (1996), 177-194.
doi: 10.1007/s002850050049. |
[18] |
T. Hillen and K. J. Painter,
A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.
doi: 10.1007/s00285-008-0201-3. |
[19] |
D. Horstmann and M. Winkler,
Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.
doi: 10.1016/j.jde.2004.10.022. |
[20] |
J. Jiang,
On a repulsion Keller–Segel system with a logarithmic sensitivity, European J. Appl. Math., (2021), 1-29.
doi: 10.1017/S0956792520000443. |
[21] |
K. Kang, T. Kolokolnikov and M. Ward,
The stability and dynamics of a spike in 1D Keller–Segel model, IMA J. Appl. Math., 72 (2007), 140-162.
doi: 10.1093/imamat/hxl028. |
[22] |
G. Karch and K. Suzuki,
Spikes and diffusion waves in a one-dimensional model of chemotaxis, Nonlinearity, 23 (2010), 3119-3137.
doi: 10.1088/0951-7715/23/12/007. |
[23] |
E. F. Keller and L. A. Segel,
Initiation of slime mold aggregation view as an instability, J. Theoret. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[24] |
E. F. Keller and L. A. Segel,
Model for chemotaxis, J. Theoret. Biol., 30 (1971), 225-234.
doi: 10.1016/0022-5193(71)90050-6. |
[25] |
E. F. Keller and L. A. Segel,
Traveling bands of chemotactic bacteria: A theoretical analysis, J. Theoret. Biol., 30 (1971), 235-248.
doi: 10.1016/0022-5193(71)90051-8. |
[26] |
T. Kolokolnikov, J. Wei and A. Alcolado,
Basic mechanisms driving complex spike dynamics in a chemotaxis model with logistic growth, SIAM J. Appl. Math., 74 (2014), 1375-1396.
doi: 10.1137/130914851. |
[27] |
K. Kurata and K. Morimoto,
Existence of multiple spike stationary patterns in a chemotaxis model with weak saturation, Discrete Contin. Dyn. Syst., 31 (2011), 139-164.
doi: 10.3934/dcds.2011.31.139. |
[28] |
X. Lai, X. Chen, C. Qin and Y. Zhang,
Existence, uniqueness and stability of steady state solution of chemotaxis model, Discrete Contin. Dyn. Syst., 36 (2016), 805-832.
doi: 10.3934/dcds.2016.36.805. |
[29] |
H. Li,
Spiky steady states of a chemotaxis system with singular sensitivity, J. Dyn. Differential Equations, 30 (2018), 1775-1795.
doi: 10.1007/s10884-017-9621-3. |
[30] |
C.-S. Lin, W.-M. Ni and I. Takagi,
Large amplitute stationary solutions to a chemotaxis system, J. Differential Equations, 72 (1988), 1-27.
doi: 10.1016/0022-0396(88)90147-7. |
[31] |
F.-H. Lin, W.-M. Ni and J. Wei,
On the number of interior peak solutions for a singularly perturbed Neumann problem, Comm. Pure Appl. Math., 60 (2007), 252-281.
doi: 10.1002/cpa.20139. |
[32] |
V. Nanjundiah,
Chemotaxis, signal relaying and aggregation morphology, J. Theor. Biol., 42 (1973), 63-105.
doi: 10.1016/0022-5193(73)90149-5. |
[33] |
W.-M. Ni and I. Takagi,
On the shape of least enery solutions to a semilinear Neumann problem, Comm. Pure Appl. Math., 44 (1991), 819-851.
doi: 10.1002/cpa.3160440705. |
[34] |
W.-M. Ni and I. Takagi,
Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J., 70 (1993), 247-281.
doi: 10.1215/S0012-7094-93-07004-4. |
[35] |
J. Pejsachowicz and P. J. Rabier,
Degree theory for $C^1$ Fredholm mappings of index 0, J. Anal. Math., 76 (1998), 289-319.
doi: 10.1007/BF02786939. |
[36] |
P. Rabinowitz,
Some global results for nonlinear eigenvalue problems, J. Functional Analysis, 7 (1971), 487-513.
doi: 10.1016/0022-1236(71)90030-9. |
[37] |
R. Schaaf,
Stationary solutions of chemotaxis systems, Trans. Amer. Math. Soc., 292 (1985), 531-556.
doi: 10.1090/S0002-9947-1985-0808736-1. |
[38] |
J. Shi and X. Wang,
On global bifurcation for quasilinear elliptic systems on bounded domains, J. Differential Equations, 246 (2009), 2788-2812.
doi: 10.1016/j.jde.2008.09.009. |
[39] |
B. Sleeman, M. Ward and J. Wei,
The existence and stability of spike patterns in a chemotaxis model, SIAM J. Appl. Math., 65 (2005), 790-817.
doi: 10.1137/S0036139902415117. |
[40] |
Q. Wang,
Boundary spikes of a Keller–Segel chemotaxis system with saturated logarithmic sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 1231-1250.
doi: 10.3934/dcdsb.2015.20.1231. |
[41] |
Q. Wang, C. Gai and J. Yan,
Qualitative analysis of a Lotka–Volterra competition system with advection, Discrete Contin. Dyn. Syst., 35 (2015), 1239-1284.
doi: 10.3934/dcds.2015.35.1239. |
[42] |
Q. Wang, Y. Song and L. Shao,
Nonconstant positive steady states and pattern formation of 1D prey-taxis systems, J. Nonlinear Sci., 27 (2017), 71-97.
doi: 10.1007/s00332-016-9326-5. |
[43] |
Q. Wang, J. Yan and C. Gai, Qualitative analysis of stationary Keller–Segel chemotaxis models with logistic growth, Z. Angew. Math. Phys., 67 (2016), Art. 51, 25 pp.
doi: 10.1007/s00033-016-0648-9. |
[44] |
Q. Wang, J. Yang and L. Zhang,
Time periodic and stable patterns of a two-competing-species Keller–Segel chemotaxis model: Effect of cellular growth, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 3547-3574.
doi: 10.3934/dcdsb.2017179. |
[45] |
Q. Wang, L. Zhang, J. Yang and J. Hu,
Global existence and steady states of a two competing species Keller–Segel chemotaxis model, Kinet. Relat. Models, 8 (2015), 777-807.
doi: 10.3934/krm.2015.8.777. |
[46] |
X. Wang,
Qualitative behavior of solutions of chemotactic diffusion systems: Effects of motility and chemotaxis and dynamics, SIAM J. Math. Anal., 31 (2000), 535-560.
doi: 10.1137/S0036141098339897. |
[47] |
X. Wang and Q. Xu,
Spiky and transition layer steady states of chemotaxis systems via global bifurcation and Helly's compactness theorem, J. Math. Biol., 66 (2013), 1241-1266.
doi: 10.1007/s00285-012-0533-x. |
[48] |
J. Wei,
On the boundary spike layer solutions of a singularly perturbed semilinear Neumann problem, J. Differential Equations, 134 (1997), 104-133.
doi: 10.1006/jdeq.1996.3218. |
[49] |
Y. Zhang, X. Chen, J. Hao, X. Lai and C. Qin,
An eigenvalue problem arising from spiky steady states of a minimal chemotaxis model, J. Math. Anal. Appl., 420 (2014), 684-704.
doi: 10.1016/j.jmaa.2014.06.005. |
[50] |
Y. Zhang, X. Chen, J. Hao, X. Lai and C. Qin,
Dynamics of spike in a Keller–Segel's minimal chemotaxis model, Discrete Contin. Dyn. Syst., 37 (2017), 1109-1127.
doi: 10.3934/dcds.2017046. |
[51] |
Y. Zhang, X. Chen, J. Hao, X. Lai and C. Qin,
Spectral analysis for stability of bubble steady states of a Keller–Segel's minimal chemotaxis model, J. Math. Anal. Appl., 446 (2017), 1105-1132.
doi: 10.1016/j.jmaa.2016.09.034. |











[1] |
Jaeyoung Byeon, Sungwon Cho, Junsang Park. On the location of a peak point of a least energy solution for Hénon equation. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1055-1081. doi: 10.3934/dcds.2011.30.1055 |
[2] |
Shun Kodama. A concentration phenomenon of the least energy solution to non-autonomous elliptic problems with a totally degenerate potential. Communications on Pure and Applied Analysis, 2017, 16 (2) : 671-698. doi: 10.3934/cpaa.2017033 |
[3] |
Futoshi Takahashi. On the number of maximum points of least energy solution to a two-dimensional Hénon equation with large exponent. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1237-1241. doi: 10.3934/cpaa.2013.12.1237 |
[4] |
Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124 |
[5] |
Henri Berestycki, Juncheng Wei. On least energy solutions to a semilinear elliptic equation in a strip. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1083-1099. doi: 10.3934/dcds.2010.28.1083 |
[6] |
Laiqing Meng, Jia Yuan, Xiaoxin Zheng. Global existence of almost energy solution to the two-dimensional chemotaxis-Navier-Stokes equations with partial diffusion. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3413-3441. doi: 10.3934/dcds.2019141 |
[7] |
Qiuping Lu, Zhi Ling. Least energy solutions for an elliptic problem involving sublinear term and peaking phenomenon. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2411-2429. doi: 10.3934/cpaa.2015.14.2411 |
[8] |
Yohei Sato, Zhi-Qiang Wang. On the least energy sign-changing solutions for a nonlinear elliptic system. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2151-2164. doi: 10.3934/dcds.2015.35.2151 |
[9] |
Yinbin Deng, Wentao Huang. Least energy solutions for fractional Kirchhoff type equations involving critical growth. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 1929-1954. doi: 10.3934/dcdss.2019126 |
[10] |
Ryuji Kajikiya. Nonradial least energy solutions of the p-Laplace elliptic equations. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 547-561. doi: 10.3934/dcds.2018024 |
[11] |
Luigi Montoro. On the shape of the least-energy solutions to some singularly perturbed mixed problems. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1731-1752. doi: 10.3934/cpaa.2010.9.1731 |
[12] |
Herbert Gajewski, Jens A. Griepentrog. A descent method for the free energy of multicomponent systems. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 505-528. doi: 10.3934/dcds.2006.15.505 |
[13] |
Xia Chen, Tuoc Phan. Free energy in a mean field of Brownian particles. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 747-769. doi: 10.3934/dcds.2019031 |
[14] |
Kongzhi Li, Xiaoping Xue. The Łojasiewicz inequality for free energy functionals on a graph. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022066 |
[15] |
Yu Zheng, Carlos A. Santos, Zifei Shen, Minbo Yang. Least energy solutions for coupled hartree system with hardy-littlewood-sobolev critical exponents. Communications on Pure and Applied Analysis, 2020, 19 (1) : 329-369. doi: 10.3934/cpaa.2020018 |
[16] |
Miaomiao Niu, Zhongwei Tang. Least energy solutions of nonlinear Schrödinger equations involving the half Laplacian and potential wells. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1215-1231. doi: 10.3934/cpaa.2016.15.1215 |
[17] |
Zhongwei Tang. Least energy solutions for semilinear Schrödinger equations involving critical growth and indefinite potentials. Communications on Pure and Applied Analysis, 2014, 13 (1) : 237-248. doi: 10.3934/cpaa.2014.13.237 |
[18] |
Miaomiao Niu, Zhongwei Tang. Least energy solutions for nonlinear Schrödinger equation involving the fractional Laplacian and critical growth. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3963-3987. doi: 10.3934/dcds.2017168 |
[19] |
Xiaoping Chen, Chunlei Tang. Least energy sign-changing solutions for Schrödinger-Poisson system with critical growth. Communications on Pure and Applied Analysis, 2021, 20 (6) : 2291-2312. doi: 10.3934/cpaa.2021077 |
[20] |
Xin Yin, Wenming Zou. Positive least energy solutions for k-coupled critical systems involving fractional Laplacian. Discrete and Continuous Dynamical Systems - S, 2021, 14 (6) : 1995-2023. doi: 10.3934/dcdss.2021042 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]