We develop a random version of the perturbation theory of Gouëzel, Keller, and Liverani, and consequently obtain results on the stability of Oseledets splittings and Lyapunov exponents for operator cocycles. By applying the theory to the Perron-Frobenius operator cocycles associated to random $ \mathcal{C}^k $ expanding maps on $ S^1 $ ($ k \ge 2 $) we provide conditions for the stability of Lyapunov exponents and Oseledets splitting of the cocycle under (ⅰ) uniformly small fiber-wise $ \mathcal{C}^{k-1} $-perturbations to the random dynamics, and (ⅱ) numerical approximation via a Fejér kernel method. A notable addition to our approach is the use of Saks spaces, which allow us to weaken the hypotheses of Gouëzel-Keller-Liverani perturbation theory, provides a unifying framework for key concepts in the so-called 'functional analytic' approach to studying dynamical systems, and has applications to the construction of anisotropic norms adapted to dynamical systems.
Citation: |
[1] |
A. Alexiewicz, On the two-norm convergence, Studia Math., 14 (1953), 49-56.
doi: 10.4064/sm-14-1-49-56.![]() ![]() ![]() |
[2] |
A. Alexiewicz and Z. Semadeni, Linear functionals on two-norm spaces, Studia Math., 17 (1958), 121-140.
doi: 10.4064/sm-17-2-121-140.![]() ![]() ![]() |
[3] |
A. Alexiewicz and Z. Semadeni, The two-norm spaces and their conjugate spaces, Studia Math., 18 (1959), 275-293.
doi: 10.4064/sm-18-3-275-293.![]() ![]() ![]() |
[4] |
V. Baladi, Correlation spectrum of quenched and annealed equilibrium states for random expanding maps, Comm. Math. Phys., 186 (1997), 671-700.
doi: 10.1007/s002200050124.![]() ![]() ![]() |
[5] |
V. Baladi, Positive Transfer Operators and Decay of Correlations, World Scientific Publishing Co., Inc., River Edge, NJ, 2000.
doi: 10.1142/9789812813633.![]() ![]() ![]() |
[6] |
V. Baladi, Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps, Springer, 2018.
doi: 10.1007/978-3-319-77661-3.![]() ![]() ![]() |
[7] |
V. Baladi, A. Kondah and B. Schmitt, Random correlations for small perturbations of expanding maps, Random Comput. Dynam., 4 (1996), 179-204.
![]() ![]() |
[8] |
M. Blank, G. Keller and C. Liverani, Ruelle–Perron–Frobenius spectrum for Anosov maps, Nonlinearity, 15 (2002), 1905-1973.
doi: 10.1088/0951-7715/15/6/309.![]() ![]() ![]() |
[9] |
A. Blumenthal, A volume-based approach to the multiplicative ergodic theorem on Banach spaces, Discrete Contin. Dyn. Syst., 36 (2016), 2377-2403.
doi: 10.3934/dcds.2016.36.2377.![]() ![]() ![]() |
[10] |
T. Bogenschütz, Stochastic stability of invariant subspaces, Ergodic Theory Dynam. Systems, 20 (2000), 663-680.
doi: 10.1017/S0143385700000353.![]() ![]() ![]() |
[11] |
A. Boyarsky and P. Góra, Laws of Chaos: Invariant Measures and Dynamical Systems in One Dimension, Probability and its Applications. Birkhäuser Boston, Inc., Boston, MA, 1997.
doi: 10.1007/978-1-4612-2024-4.![]() ![]() ![]() |
[12] |
M. Brin and G. Stuck, Introduction to Dynamical Systems, Cambridge University Press, 2002.
doi: 10.1017/CBO9780511755316.![]() ![]() ![]() |
[13] |
J. Cooper, Saks Spaces and Applications to Functional Analysis, no. 139 in North-Holland Mathematics Studies, North-Holland, 1987, URL https://books.google.com.au/books?id=JjdPAQAAIAAJ.
![]() ![]() |
[14] |
J. Cooper, Saks Spaces and Applications to Functional Analysis, North-Holland Mathematics Studies, Elsevier Science, 2011.
![]() ![]() |
[15] |
M. Dellnitz, G. Froyland and S. Sertl, On the isolated spectrum of the Perron-Frobenius operator, Nonlinearity, 13 (2000), 1171-1188.
doi: 10.1088/0951-7715/13/4/310.![]() ![]() ![]() |
[16] |
G. Froyland, C. González-Tokman and A. Quas, Detecting isolated spectrum of transfer and Koopman operators with Fourier analytic tools, J. Comput. Dyn, 1 (2014), 249-278.
doi: 10.3934/jcd.2014.1.249.![]() ![]() ![]() |
[17] |
G. Froyland, C. González-Tokman and A. Quas, Stability and approximation of random invariant densities for Lasota–Yorke map cocycles, Nonlinearity, 27 (2014), 647-660.
doi: 10.1088/0951-7715/27/4/647.![]() ![]() ![]() |
[18] |
G. Froyland, S. Lloyd and A. Quas, Coherent structures and isolated spectrum for Perron–Frobenius cocycles, Theory Dynam. Systems, 30 (2010), 729-756.
doi: 10.1017/S0143385709000339.![]() ![]() ![]() |
[19] |
G. Froyland, S. Lloyd and A. Quas, A semi-invertible Oseledets theorem with applications to transfer operator cocycles, Discrete Contin. Dyn. Syst., 33 (2013), 3835-3860.
doi: 10.3934/dcds.2013.33.3835.![]() ![]() ![]() |
[20] |
G. Froyland, S. Lloyd and N. Santitissadeekorn, Coherent sets for nonautonomous dynamical systems, Phys. D, 239 (2010), 1527-1541.
doi: 10.1016/j.physd.2010.03.009.![]() ![]() ![]() |
[21] |
S. Galatolo, Statistical properties of dynamics. Introduction to the functional analytic approach, preprint, arXiv: 1510.02615.
![]() |
[22] |
C. González-Tokman, Multiplicative ergodic theorems for transfer operators: Towards the identification and analysis of coherent structures in non-autonomous dynamical systems, Contemp. Math, 709 (2018), 31-52.
doi: 10.1090/conm/709/14290.![]() ![]() ![]() |
[23] |
C. González-Tokman and A. Quas, A semi-invertible operator Oseledets theorem, Ergodic Theory Dynam. Systems, 34 (2014), 1230-1272.
doi: 10.1017/etds.2012.189.![]() ![]() ![]() |
[24] |
C. González-Tokman and A. Quas, A concise proof of the multiplicative ergodic theorem on Banach spaces, J. Mod. Dyn., 9 (2015), 237-255.
doi: 10.3934/jmd.2015.9.237.![]() ![]() ![]() |
[25] |
C. González-Tokman and A. Quas, Stability and collapse of the Lyapunov spectrum for Perron-Frobenius operator cocycles, J. Eur. Math. Soc, 23 (2021), 3419-3457.
doi: 10.4171/JEMS/1096.![]() ![]() ![]() |
[26] |
S. Gouëzel and C. Liverani, Banach spaces adapted to Anosov systems, Ergodic Theory Dynam. Systems, 26 (2006), 189-217.
doi: 10.1017/S0143385705000374.![]() ![]() ![]() |
[27] |
H. Hennion, Sur un théorème spectral et son application aux noyaux lipchitziens, Proc. Amer. Math. Soc., 118 (1993), 627-634.
doi: 10.2307/2160348.![]() ![]() ![]() |
[28] |
T. Kato, Perturbation Theory for Linear Operators, Grundlehren der mathematischen Wissenschaften, Band 132 Springer-Verlag New York, Inc., New York, 1966.
![]() ![]() |
[29] |
Y. Katznelson, An Introduction to Harmonic Analysis, 3$^{rd}$ edtion, Cambridge University Press, 2004.
doi: 10.1017/CBO9781139165372.![]() ![]() ![]() |
[30] |
G. Keller, Stochastic stability in some chaotic dynamical systems, Monatsh. Math., 94 (1982), 313-333.
doi: 10.1007/BF01667385.![]() ![]() ![]() |
[31] |
G. Keller, Generalized bounded variation and applications to piecewise monotonic transformations, Z. Wahrsch. Verw. Gebiete, 69 (1985), 461-478.
doi: 10.1007/BF00532744.![]() ![]() ![]() |
[32] |
G. Keller and C. Liverani, Stability of the spectrum for transfer operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 28 (1999), 141-152.
![]() ![]() |
[33] |
G. Keller and H. H. Rugh, Eigenfunctions for smooth expanding circle maps, Nonlinearity, 17 (2004), 1723-1730.
doi: 10.1088/0951-7715/17/5/009.![]() ![]() ![]() |
[34] |
Z. Lian and K. Lu, Lyapunov Eexponents and Invariant Manifolds for Random Dynamical Systems in A Banach Space, Amer. Math. Soc., (2010).
doi: 10.1090/S0065-9266-10-00574-0.![]() ![]() ![]() |
[35] |
C. Liverani, Invariant measures and their properties. A functional analytic point of view, Dynamical Systems. Part Ⅱ, (2003), 185-237.
![]() ![]() |
[36] |
Y. Nakano, Stochastic stability for fiber expanding maps via a perturbative spectral approach, Stoch. Dyn., 16 (2016), 1650011, 15 pp.
doi: 10.1142/S0219493716500118.![]() ![]() ![]() |
[37] |
M. Novel, p-dimensional cones and applications, preprint, arXiv: 1712.00762.
![]() |
[38] |
V. I. Oseledets, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, rudy Moskov. Mat. Obšč., 19 (1968), 179-210.
![]() ![]() |
[39] |
A. Quas, P. Thieullen and M. Zarrabi, Explicit bounds for separation between Oseledets subspaces, Dyn. Syst., 34 (2019), 517-560.
doi: 10.1080/14689367.2019.1571562.![]() ![]() ![]() |
[40] |
H. Schaefer, Topological Vector Spaces, Graduate Texts in Mathematics, Vol. 3. Springer-Verlag, New York-Berlin, 1971.
![]() ![]() |
[41] |
J. Sedro, Étude de Systèmes Dynamiques Avec Perte de Régularité, PhD thesis, 2018.
![]() |
[42] |
J. Slipantschuk, O. F. Bandtlow and W. Just, Analytic expanding circle maps with explicit spectra, Nonlinearity, 26 (2013), 3231-3245.
doi: 10.1088/0951-7715/26/12/3231.![]() ![]() ![]() |
[43] |
T. Tao, A quick application of the closed graph theorem, https://terrytao.wordpress.com/2016/04/22/a-quick-application-of-the-closed-graph-theorem/#comments, Accessed: 2019-11-21.
![]() |
[44] |
P. Thieullen, Fibrés dynamiques asymptotiquement compacts exposants de Lyapounov. Entropie. Dimension, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4 (1987), 49-97.
doi: 10.1016/s0294-1449(16)30373-0.![]() ![]() ![]() |
[45] |
M. G. Varzaneh and S. Riedel, A dynamical theory for singular stochastic delay differential equations with a Multiplicative Ergodic Theorem on fields of Banach spaces, arXiv preprint, arXiv: 1903.01172.
![]() |