\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Persistence and convergence in parabolic-parabolic chemotaxis system with logistic source on $ \mathbb{R}^{N} $

Abstract Full Text(HTML) Related Papers Cited by
  • In the current paper, we consider the following parabolic-parabolic chemotaxis system with logistic source on $ \mathbb{R}^{N} $,

    $ \begin{equation} \begin{cases} u_{t} = \Delta u - \chi\nabla\cdot ( u\nabla v) + u(a-bu),\quad x\in{{\mathbb R}}^N,\\ {v_t} = \Delta v -\lambda v+\mu u,\quad x\in{{\mathbb R}}^N,\,\,\, \end{cases} \;\;\;\;\;\;\;\;\left( 1 \right)\end{equation} $

    where $ \chi, \ a,\ b,\ \lambda,\ \mu $ are positive constants and $ N $ is a positive integer. We investigate the persistence and convergence in (1). To this end, we first prove, under the assumption $ b>\frac{N\chi\mu}{4} $, the global existence of a unique classical solution $ (u(x,t;u_0, v_0),v(x,t;u_0, v_0)) $ of (1) with $ u(x,0;u_0, v_0) = u_0(x) $ and $ v(x,0;u_0, v_0) = v_0(x) $ for every nonnegative, bounded, and uniformly continuous function $ u_0(x) $, and every nonnegative, bounded, uniformly continuous, and differentiable function $ v_0(x) $. Next, under the same assumption $ b>\frac{N\chi\mu}{4} $, we show that persistence phenomena occurs, that is, any globally defined bounded positive classical solution with strictly positive initial function $ u_0 $ is bounded below by a positive constant independent of $ (u_0, v_0) $ when time is large. Finally, we discuss the asymptotic behavior of the global classical solution with strictly positive initial function $ u_0 $. We show that there is $ K = K(a,\lambda,N)>\frac{N}{4} $ such that if $ b>K \chi\mu $ and $ \lambda\geq \frac{a}{2} $, then for every strictly positive initial function $ u_0(\cdot) $, it holds that

    $ \lim\limits_{t\to\infty}\big[\|u(x,t;u_0, v_0)-\frac{a}{b}\|_{\infty}+\|v(x,t;u_0, v_0)-\frac{\mu}{\lambda}\frac{a}{b}\|_{\infty}\big] = 0. $

    Mathematics Subject Classification: 35A01, 35B35, 35B40, 35Q92, 92C17.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.  doi: 10.1142/S021820251550044X.
    [2] S. Childress and J. K. Percus, Nonlinear aspects of chemotaxis, Math. Biosci., 56 (1981), 217-237.  doi: 10.1016/0025-5564(81)90055-9.
    [3] J. I. Diaz and T. Nagai, Symmetrization in a parabolic-elliptic system related to chemotaxis, Adv. Math. Sci. Appl., 5 (1995), 659-680. 
    [4] J. I. DiazT. Nagai and J.-M. Rakotoson, Symmetrization techniques on unbounded domains: Application to a chemotaxis system on ${{\mathbb R}}^{N}$, J. Differential Equations, 145 (1998), 156-183.  doi: 10.1006/jdeq.1997.3389.
    [5] E. GalakhovO. Salieva and J. I. Tello, On a parabolic-elliptic system with chemotaxis and logistic type growth, J. Differential Equations, 261 (2016), 4631-4647.  doi: 10.1016/j.jde.2016.07.008.
    [6] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin-New York, 1981.
    [7] T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.
    [8] D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences, Jahresber. Dtsch. Math.-Ver., 105 (2003), 103-165. 
    [9] D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159-177.  doi: 10.1017/S0956792501004363.
    [10] T. B. Issa and W. Shen, Pointwise persistence in full chemotaxis models with logistic source on bounded heterogeneous environments, J. Math. Anal. Appl., 490 (2020), 124204, 30 pp. doi: 10.1016/j.jmaa.2020.124204.
    [11] E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.
    [12] E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theoret. Biol., 30 (1971), 225-234.  doi: 10.1016/0022-5193(71)90050-6.
    [13] J. Lankeit, Chemotaxis can prevent thresholds on population density, Discr. Cont. Dyn. Syst. B, 20 (2015), 1499-1527.  doi: 10.3934/dcdsb.2015.20.1499.
    [14] J. Lankeit, Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, J. Differential Equations, 258 (2015), 1158-1191.  doi: 10.1016/j.jde.2014.10.016.
    [15] D. LiC. MuK. Lin and L. Wang, Large time behavior of solutions to an attraction-repulsion chemotaxis system with logistic source in three demensions, J. Math. Anal. Appl., 448 (2017), 914-936.  doi: 10.1016/j.jmaa.2016.11.036.
    [16] J. LiY. Ke and Y. Wang, Large time behavior of solutions to a fully parabolic attraction-repulsion chemotaxis system with logistic source, Nonlinear Anal. Real World Appl., 39 (2018), 261-277.  doi: 10.1016/j.nonrwa.2017.07.002.
    [17] K. Lin and C. L. Mu, Global dynamics in a fully parabolic chemotaxis system with logistic source, Discrete Contin. Dyn. Syst., 36 (2016), 5025-5046.  doi: 10.3934/dcds.2016018.
    [18] T. NagaiT. Senba and K. Yoshida, Application of the Trudinger-Moser Inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433. 
    [19] T. NagaiR. Syukuinn and M. Umesako, Decay properties and asymptotic profiles of bounded solutions to a parabolic system of chemotaxis in ${{\mathbb R}}^N$., Funkcial. Ekvac., 46 (2003), 383-407.  doi: 10.1619/fesi.46.383.
    [20] T. Nagai and T. Yamada, Large time behavior of bounded solutions to a parabolic system of chemotaxis in the whole space, J. Math. Anal. Appl., 336 (2007), 704-726.  doi: 10.1016/j.jmaa.2007.03.014.
    [21] K. OsakiT. TsujikawaA. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal., 51 (2002), 119-144.  doi: 10.1016/S0362-546X(01)00815-X.
    [22] K. Osaki and A. Yagi, Finite dimensional attractors for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44 (2001), 441-469. 
    [23] K. J. Painter, Mathematical models for chemotaxis1 and their applications in self organization phenomena, J. Theoret. Biol., 481 (2019), 162-182.  doi: 10.1016/j.jtbi.2018.06.019.
    [24] K. J. Painter and T. Hillen, Spatio-temporal chaos in a chemotaxis model, Phys. D, 240 (2011), 363-375.  doi: 10.1016/j.physd.2010.09.011.
    [25] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.
    [26] R. B. Salako and W. Shen, Global existence and asymptotic behavior of classical solutions to a parabolic-elliptic chemotaxis system with logistic source on $\mathbb{R}^N$, J. Differential Equations, 262 (2017), 5635-5690.  doi: 10.1016/j.jde.2017.02.011.
    [27] R. B. Salako and W. Shen, Spreading speeds and traveling waves of a parabolic-elliptic chemotaxis system with logistic source on $\mathbb{R}^N$, Discrete Contin. Dyn. Syst., 37 (2017), 6189-6225.  doi: 10.3934/dcds.2017268.
    [28] R. B. Salako and W. Shen, Parabolic-elliptic chemotaxis model with space-time-dependent logistic sources on $\mathbb{R}^N$. I. Persistence and asymptotic spreading, Math. Models Methods Appl. Sci., 28 (2018), 2237-2273.  doi: 10.1142/S0218202518400146.
    [29] R. B. SalakoW. Shen and S. Xue, Can chemotaxis speed up or slow down the spatial spreading in parabolic-elliptic Keller-Segel systems with logistic source?, J. Math. Biol., 79 (2019), 1455-1490.  doi: 10.1007/s00285-019-01400-0.
    [30] Y. Tao and M. Winkler, Persistence of mass in a chemotaxis system with logistic source, J. Differential Eq., 259 (2015), 6142-6161.  doi: 10.1016/j.jde.2015.07.019.
    [31] J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Partial Differential Equations, 32 (2007), 849-877.  doi: 10.1080/03605300701319003.
    [32] L. WangC. Mu and P. Zheng, On a quasilinear parabolic-elliptic chemotaxis system with logistic source, J. Differential Equations, 256 (2014), 1847-1872.  doi: 10.1016/j.jde.2013.12.007.
    [33] M. Winkler, Chemotaxis with logistic source: Very weak global solutions and their boundedness properties, J. Math. Anal. Appl., 348 (2008), 708-729.  doi: 10.1016/j.jmaa.2008.07.071.
    [34] M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Part. Differential Eq., 35 (2010), 1516-1537.  doi: 10.1080/03605300903473426.
    [35] M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.
    [36] M. Winkler, Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, J. Math. Anal. Appl., 384 (2011), 261-272.  doi: 10.1016/j.jmaa.2011.05.057.
    [37] M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767.  doi: 10.1016/j.matpur.2013.01.020.
    [38] M. Winkler, Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening, J. Differential Eq., 257 (2014), 1056-1077.  doi: 10.1016/j.jde.2014.04.023.
    [39] M. Winkler, How far can chemotactic cross-diffusion enforce exceeding carrying capacities?, J. Nonlinear Sci., 24 (2014), 809-855.  doi: 10.1007/s00332-014-9205-x.
    [40] T. Yokota and N. Yoshino, Existence of solutions to chemotaxis dynamics with logistic source, Discrete Contin. Dyn. Syst., Dynamical systems, differential equations and applications. 10th AIMS Conference. Suppl., (2015), 1125–1133. doi: 10.3934/proc.2015.1125.
    [41] J. ZhengY. Y. LiG. Bao and X. Zou, A new result for global existence and boundedness of solutions to a parabolic-parabolic Keller-Segel system with logistic source, J. Math. Anal. Appl., 462 (2018), 1-25.  doi: 10.1016/j.jmaa.2018.01.064.
    [42] P. ZhengC. MuX. Hu and Y. Tian, Boundedness of solutions in a chemotaxis system with nonlinear sensitivity and logistic source, J. Math. Anal. Appl., 424 (2015), 509-522.  doi: 10.1016/j.jmaa.2014.11.031.
  • 加载中
SHARE

Article Metrics

HTML views(449) PDF downloads(261) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return