• Previous Article
    On the analyticity of the trajectories of the particles in the planar patch problem for some active scalar equations
  • DCDS Home
  • This Issue
  • Next Article
    Persistence and convergence in parabolic-parabolic chemotaxis system with logistic source on $ \mathbb{R}^{N} $
June  2022, 42(6): 2927-2943. doi: 10.3934/dcds.2022004

Global regularity for the 3D compressible magnetohydrodynamics with general pressure

Department of Mathematics and Information Technology, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, New Territories, Hong Kong

Received  March 2021 Revised  October 2021 Published  June 2022 Early access  January 2022

Fund Project: The work described in this paper was partially supported from the Dean's Research Fund of the Faculty of Liberal Arts and Social Science, The Education University of Hong Kong, HKSAR, China (Project No. FLASS/DRF 04634)

We address the compressible magnetohydrodynamics (MHD) equations in $ \mathbb R^3 $ and establish a blow-up criterion for the local-in-time smooth solutions in terms of the density only. Namely, if the density is away from vacuum ($ \rho = 0 $) and the concentration of mass ($ \rho = \infty $), then a local-in-time smooth solution can be continued globally in time. The results generalise and strengthen the previous ones in the sense that there is no magnetic field present in the criterion and the assumption on the pressure is significantly relaxed. The proof is based on some new a priori estimates for three-dimensional compressible MHD equations.

Citation: Anthony Suen. Global regularity for the 3D compressible magnetohydrodynamics with general pressure. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 2927-2943. doi: 10.3934/dcds.2022004
References:
[1]

H. Bahouri and J.-Y. Chemin, Équations de transport relatives á des champs de vecteurs non-lipschitziens et mécanique des fluides, Arch. Rational Mech. Anal., 127 (1994), 159-181.  doi: 10.1007/BF00377659.

[2]

H. Cabannes, Theoretical magnetofluiddynamics, Applied Mathematics and Mechanics, Academic Press, New York; London, 13 (1970).

[3]

J. FanS. Jiang and Y. Ou, A blow-up criterion for compressible viscous heat-conductive flows, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 337-350.  doi: 10.1016/j.anihpc.2009.09.012.

[4]

D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data, J. Differential Equations, 120 (1995), 215-254.  doi: 10.1006/jdeq.1995.1111.

[5]

X. Hu and D. Wang, Global solutions to the three-dimensional full compressible magnetohydrodynamic flows, Comm. Math. Phys., 283 (2008), 255-284.  doi: 10.1007/s00220-008-0497-2.

[6]

X. Hu and D. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal., 197 (2010), 203-238.  doi: 10.1007/s00205-010-0295-9.

[7]

X. HuangJ. Li and Z. Xin, Serrin-type criterion for the three-dimensional viscous compressible flows, SIAM J. Math. Anal., 43 (2011), 1872-1886.  doi: 10.1137/100814639.

[8]

S. Kawashima, Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics, Ph. D. Thesis, Kyoto University, 9 (1984).

[9]

F. Li and H. Yu, Optimal decay rate of classical solutions to the compressible magnetohydrodynamic equations, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 109-126.  doi: 10.1017/S0308210509001632.

[10]

P.-L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 2. Compressible models. Oxford Lecture Series in Mathematics and its Applications, 10. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1998.

[11]

M. LuY. Du and Z.-A. Yao, Blow-up phenomena for the 3D compressible MHD equations, Discrete Contin. Dyn. Syst., 32 (2012), 1835-1855.  doi: 10.3934/dcds.2012.32.1835.

[12]

O. Rozanova, Blow-up of smooth highly decreasing at infinity solutions to the compressible Navier-Stokes equations, J. Differential Equations, 245 (2008), 1762-1774.  doi: 10.1016/j.jde.2008.07.007.

[13]

R. Sart, Existence of finite energy weak solutions for the equations MHD of compressible fluids, Appl. Anal., 88 (2009), 357-379.  doi: 10.1080/00036810802713933.

[14]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N. J., 1970.

[15]

A. Suen, A blow-up criterion for the 3D compressible magnetohydrodynamics in terms of density, Discrete Contin. Dyn. Syst., 33 (2013), 3791-3805.  doi: 10.3934/dcds.2013.33.3791.

[16]

A. Suen, Existence and a blow-up criterion of solution to the 3D compressible Navier-Stokes-Poisson equations with finite energy, Discrete Contin. Dyn. Syst., 40 (2020), 1775-1798.  doi: 10.3934/dcds.2020093.

[17]

A. Suen, Existence and uniqueness of low-energy weak solutions to the compressible 3D magnetohydrodynamics equations, J. Differential Equations, 268 (2020), 2622-2671.  doi: 10.1016/j.jde.2019.09.037.

[18]

A. Suen, Existence, stability and long time behaviour of weak solutions of the three-dimensional compressible navier-stokes equations with potential force, J. Differential Equations, 299 (2021), 463-512.  doi: 10.1016/j.jde.2021.07.027.

[19]

A. Suen and D. Hoff, Global low-energy weak solutions of the equations of three-dimensional compressible magnetohydrodynamics, Arch. Ration. Mech. Anal., 205 (2012), 27-58.  doi: 10.1007/s00205-012-0498-3.

[20]

Y. SunC. Wang and Z. Zhang, A Beale-Kato-Majda blow-up criterion for the 3-D compressible Navier-Stokes equations, J. Math. Pures Appl., 95 (2011), 36-47.  doi: 10.1016/j.matpur.2010.08.001.

[21]

Z. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math., 51 (1998), 229-240.  doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C.

[22]

W. P. Ziemer, Weakly Differentiable Functions, Graduate Texts in Mathematics, 120. Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4612-1015-3.

show all references

References:
[1]

H. Bahouri and J.-Y. Chemin, Équations de transport relatives á des champs de vecteurs non-lipschitziens et mécanique des fluides, Arch. Rational Mech. Anal., 127 (1994), 159-181.  doi: 10.1007/BF00377659.

[2]

H. Cabannes, Theoretical magnetofluiddynamics, Applied Mathematics and Mechanics, Academic Press, New York; London, 13 (1970).

[3]

J. FanS. Jiang and Y. Ou, A blow-up criterion for compressible viscous heat-conductive flows, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 337-350.  doi: 10.1016/j.anihpc.2009.09.012.

[4]

D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data, J. Differential Equations, 120 (1995), 215-254.  doi: 10.1006/jdeq.1995.1111.

[5]

X. Hu and D. Wang, Global solutions to the three-dimensional full compressible magnetohydrodynamic flows, Comm. Math. Phys., 283 (2008), 255-284.  doi: 10.1007/s00220-008-0497-2.

[6]

X. Hu and D. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal., 197 (2010), 203-238.  doi: 10.1007/s00205-010-0295-9.

[7]

X. HuangJ. Li and Z. Xin, Serrin-type criterion for the three-dimensional viscous compressible flows, SIAM J. Math. Anal., 43 (2011), 1872-1886.  doi: 10.1137/100814639.

[8]

S. Kawashima, Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics, Ph. D. Thesis, Kyoto University, 9 (1984).

[9]

F. Li and H. Yu, Optimal decay rate of classical solutions to the compressible magnetohydrodynamic equations, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 109-126.  doi: 10.1017/S0308210509001632.

[10]

P.-L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 2. Compressible models. Oxford Lecture Series in Mathematics and its Applications, 10. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1998.

[11]

M. LuY. Du and Z.-A. Yao, Blow-up phenomena for the 3D compressible MHD equations, Discrete Contin. Dyn. Syst., 32 (2012), 1835-1855.  doi: 10.3934/dcds.2012.32.1835.

[12]

O. Rozanova, Blow-up of smooth highly decreasing at infinity solutions to the compressible Navier-Stokes equations, J. Differential Equations, 245 (2008), 1762-1774.  doi: 10.1016/j.jde.2008.07.007.

[13]

R. Sart, Existence of finite energy weak solutions for the equations MHD of compressible fluids, Appl. Anal., 88 (2009), 357-379.  doi: 10.1080/00036810802713933.

[14]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N. J., 1970.

[15]

A. Suen, A blow-up criterion for the 3D compressible magnetohydrodynamics in terms of density, Discrete Contin. Dyn. Syst., 33 (2013), 3791-3805.  doi: 10.3934/dcds.2013.33.3791.

[16]

A. Suen, Existence and a blow-up criterion of solution to the 3D compressible Navier-Stokes-Poisson equations with finite energy, Discrete Contin. Dyn. Syst., 40 (2020), 1775-1798.  doi: 10.3934/dcds.2020093.

[17]

A. Suen, Existence and uniqueness of low-energy weak solutions to the compressible 3D magnetohydrodynamics equations, J. Differential Equations, 268 (2020), 2622-2671.  doi: 10.1016/j.jde.2019.09.037.

[18]

A. Suen, Existence, stability and long time behaviour of weak solutions of the three-dimensional compressible navier-stokes equations with potential force, J. Differential Equations, 299 (2021), 463-512.  doi: 10.1016/j.jde.2021.07.027.

[19]

A. Suen and D. Hoff, Global low-energy weak solutions of the equations of three-dimensional compressible magnetohydrodynamics, Arch. Ration. Mech. Anal., 205 (2012), 27-58.  doi: 10.1007/s00205-012-0498-3.

[20]

Y. SunC. Wang and Z. Zhang, A Beale-Kato-Majda blow-up criterion for the 3-D compressible Navier-Stokes equations, J. Math. Pures Appl., 95 (2011), 36-47.  doi: 10.1016/j.matpur.2010.08.001.

[21]

Z. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math., 51 (1998), 229-240.  doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C.

[22]

W. P. Ziemer, Weakly Differentiable Functions, Graduate Texts in Mathematics, 120. Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4612-1015-3.

[1]

Anthony Suen. Corrigendum: A blow-up criterion for the 3D compressible magnetohydrodynamics in terms of density. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1387-1390. doi: 10.3934/dcds.2015.35.1387

[2]

Anthony Suen. A blow-up criterion for the 3D compressible magnetohydrodynamics in terms of density. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3791-3805. doi: 10.3934/dcds.2013.33.3791

[3]

Lei Zhang, Bin Liu. Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2655-2685. doi: 10.3934/dcds.2018112

[4]

Van Duong Dinh. Blow-up criteria for linearly damped nonlinear Schrödinger equations. Evolution Equations and Control Theory, 2021, 10 (3) : 599-617. doi: 10.3934/eect.2020082

[5]

Yu-Zhu Wang, Weibing Zuo. On the blow-up criterion of smooth solutions for Hall-magnetohydrodynamics system with partial viscosity. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1327-1336. doi: 10.3934/cpaa.2014.13.1327

[6]

Ming Lu, Yi Du, Zheng-An Yao. Blow-up phenomena for the 3D compressible MHD equations. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1835-1855. doi: 10.3934/dcds.2012.32.1835

[7]

Ming Lu, Yi Du, Zheng-An Yao, Zujin Zhang. A blow-up criterion for the 3D compressible MHD equations. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1167-1183. doi: 10.3934/cpaa.2012.11.1167

[8]

Wenjing Zhao. Local well-posedness and blow-up criteria of magneto-viscoelastic flows. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4637-4655. doi: 10.3934/dcds.2018203

[9]

Vural Bayrak, Emil Novruzov, Ibrahim Ozkol. Local-in-space blow-up criteria for two-component nonlinear dispersive wave system. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 6023-6037. doi: 10.3934/dcds.2019263

[10]

Alejandro Sarria. Global estimates and blow-up criteria for the generalized Hunter-Saxton system. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 641-673. doi: 10.3934/dcdsb.2015.20.641

[11]

Baoquan Yuan, Xiao Li. Blow-up criteria of smooth solutions to the three-dimensional micropolar fluid equations in Besov space. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 2167-2179. doi: 10.3934/dcdss.2016090

[12]

Jihoon Lee. Scaling invariant blow-up criteria for simplified versions of Ericksen-Leslie system. Discrete and Continuous Dynamical Systems - S, 2015, 8 (2) : 381-388. doi: 10.3934/dcdss.2015.8.381

[13]

Xin Zhong. A blow-up criterion for three-dimensional compressible magnetohydrodynamic equations with variable viscosity. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3249-3264. doi: 10.3934/dcdsb.2018318

[14]

Xiaojing Xu. Local existence and blow-up criterion of the 2-D compressible Boussinesq equations without dissipation terms. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1333-1347. doi: 10.3934/dcds.2009.25.1333

[15]

Asma Azaiez. Refined regularity for the blow-up set at non characteristic points for the vector-valued semilinear wave equation. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2397-2408. doi: 10.3934/cpaa.2019108

[16]

Bin Han, Na Zhao. Improved blow up criterion for the three dimensional incompressible magnetohydrodynamics system. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4455-4478. doi: 10.3934/cpaa.2020203

[17]

Anthony Suen. Existence and a blow-up criterion of solution to the 3D compressible Navier-Stokes-Poisson equations with finite energy. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1775-1798. doi: 10.3934/dcds.2020093

[18]

C. Y. Chan. Recent advances in quenching and blow-up of solutions. Conference Publications, 2001, 2001 (Special) : 88-95. doi: 10.3934/proc.2001.2001.88

[19]

Jorge A. Esquivel-Avila. Blow-up in damped abstract nonlinear equations. Electronic Research Archive, 2020, 28 (1) : 347-367. doi: 10.3934/era.2020020

[20]

Marina Chugunova, Chiu-Yen Kao, Sarun Seepun. On the Benilov-Vynnycky blow-up problem. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1443-1460. doi: 10.3934/dcdsb.2015.20.1443

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (181)
  • HTML views (125)
  • Cited by (0)

Other articles
by authors

[Back to Top]