-
Previous Article
A Cantor dynamical system is slow if and only if all its finite orbits are attracting
- DCDS Home
- This Issue
-
Next Article
On the analyticity of the trajectories of the particles in the planar patch problem for some active scalar equations
The mean-field limit of the Lieb-Liniger model
MIT, Department of Mathematics, 77 Massachusetts Ave, Cambridge, MA 02139-4307, USA |
We consider the well-known Lieb-Liniger (LL) model for $ N $ bosons interacting pairwise on the line via the $ \delta $ potential in the mean-field scaling regime. Assuming suitable asymptotic factorization of the initial wave functions and convergence of the microscopic energy per particle, we show that the time-dependent reduced density matrices of the system converge in trace norm to the pure states given by the solution to the one-dimensional cubic nonlinear Schrödinger equation (NLS) with an explict rate of convergence. In contrast to previous work [
References:
[1] |
R. Adami, C. Bardos, F. Golse and A. Teta,
Towards a rigorous derivation of the cubic NLSE in dimension one, Asymptot. Anal., 40 (2004), 93-108.
|
[2] |
R. Adami, F. Golse and A. Teta,
Rigorous derivation of the cubic NLS in dimension one, J. Stat. Phys., 127 (2007), 1193-1220.
doi: 10.1007/s10955-006-9271-z. |
[3] |
Z. Ammari and S. Breteaux,
Propagation of chaos for many-boson systems in one dimension with a point pair-interaction, Asymptot. Anal., 76 (2012), 123-170.
doi: 10.3233/ASY-2011-1064. |
[4] |
C. Bardos, F. Golse and N. J. Mauser,
Weak coupling limit of the $N$-particle Schrödinger equation, Methods Appl. Anal., 7 (2000), 275-293.
doi: 10.4310/MAA.2000.v7.n2.a2. |
[5] |
N. Benedikter, M. Porta and B. Schlein, Effective Evolution Equations from Quantum Dynamics, SpringerBriefs in Mathematical Physics, 7. Springer, Cham, 2016.
doi: 10.1007/978-3-319-24898-1. |
[6] |
H. Bethe,
Zur theorie der metalle, Zeitschrift Für Physik, 71 (1931), 205-226.
doi: 10.1007/BF01341708. |
[7] |
L. Boßmann, Derivation of the 1d nonlinear Schrödinger equation from the 3d quantum many-body dynamics of strongly confined bosons, J. Math. Phys., 60 (2019), 031902, 30.
doi: 10.1063/1.5075514. |
[8] |
L. Boßmann, N. Pavlović, P. Pickl and A. Soffer,
Higher order corrections to the mean-field description of the dynamics of interacting Bosons, J. Stat. Phys., 178 (2020), 1362-1396.
doi: 10.1007/s10955-020-02500-8. |
[9] |
L. Boßmann and S. Teufel,
Derivation of the 1d Gross-Pitaevskii equation from the 3d quantum many-body dynamics of strongly confined bosons, Ann. Henri Poincaré, 20 (2019), 1003-1049.
doi: 10.1007/s00023-018-0738-7. |
[10] |
C. Brennecke and B. Schlein,
Gross-Pitaevskii dynamics for Bose-Einstein condensates, Anal. PDE, 12 (2019), 1513-1596.
doi: 10.2140/apde.2019.12.1513. |
[11] |
R. Carles,
Nonlinear Schrödinger equation with time dependent potential, Commun. Math. Sci., 9 (2011), 937-964.
doi: 10.4310/CMS.2011.v9.n4.a1. |
[12] |
T. Chen, C. Hainzl, N. Pavlović and R. Seiringer,
Unconditional uniqueness for the cubic Gross-Pitaevskii hierarchy via quantum de Finetti, Comm. Pure Appl. Math., 68 (2015), 1845-1884.
doi: 10.1002/cpa.21552. |
[13] |
T. Chen and N. Pavlović,
Derivation of the cubic NLS and Gross-Pitaevskii hierarchy from manybody dynamics in $d = 3$ based on spacetime norms, Ann. Henri Poincaré, 15 (2014), 543-588.
doi: 10.1007/s00023-013-0248-6. |
[14] |
X. Chen and J. Holmer,
Focusing quantum many-body dynamics: The rigorous derivation of the 1D focusing cubic nonlinear Schrödinger equation, Arch. Ration. Mech. Anal., 221 (2016), 631-676.
doi: 10.1007/s00205-016-0970-6. |
[15] |
X. Chen and J. Holmer,
The derivation of the $\Bbb T^3$ energy-critical NLS from quantum many-body dynamics, Invent. Math., 217 (2019), 433-547.
doi: 10.1007/s00222-019-00868-3. |
[16] |
J. Chong, Dynamics of large boson systems with attractive interaction and a derivation of the cubic focusing NLS in $\mathbb{R}^3$, J. Math. Phys., 62 (2021), Paper No. 042106, 38 pp.
doi: 10.1063/1.5099113. |
[17] |
S. Dettmer, D. Hellweg, P. Ryytty, J. J. Arlt, W. Ertmer, K. Sengstock, D. S. Petrov, G. V. Shlyapnikov, H. Kreutzmann, L. Santos and M. Lewenstein,
Observation of phase fluctuations in elongated bose-einstein condensates, Phys. Rev. Lett., 87 (2001), 160406.
|
[18] |
V. Dunjko, V. Lorent and M. Olshanii,
Bosons in cigar-shaped traps: Thomas-fermi regime, tonks-girardeau regime, and in between, Phys. Rev. Lett., 86 (2001), 5413-5416.
|
[19] |
L. Erdös, B. Schlein and H.-T. Yau,
Derivation of the Gross-Pitaevskii hierarchy for the dynamics of Bose-Einstein condensate, Comm. Pure Appl. Math., 59 (2006), 1659-1741.
doi: 10.1002/cpa.20123. |
[20] |
L. Erdös, B. Schlein and H.-T. Yau,
Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems, Invent. Math., 167 (2007), 515-614.
doi: 10.1007/s00222-006-0022-1. |
[21] |
L. Erdös, B. Schlein and H.-T. Yau,
Rigorous derivation of the Gross-Pitaevskii equation with a large interaction potential, J. Amer. Math. Soc., 22 (2009), 1099-1156.
doi: 10.1090/S0894-0347-09-00635-3. |
[22] |
L. Erdös, B. Schlein and H.-T. Yau,
Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate, Ann. of Math., 172 (2010), 291-370.
doi: 10.4007/annals.2010.172.291. |
[23] |
L. Erdös and H.-T. Yau,
Derivation of the nonlinear Schrödinger equation from a many body Coulomb system, Adv. Theor. Math. Phys., 5 (2001), 1169-1205.
doi: 10.4310/ATMP.2001.v5.n6.a6. |
[24] |
J. Esteve, J. B. Trebbia, T. Schumm, A. Aspect, C. I. Westbrook and I. Bouchoule,
Observations of density fluctuations in an elongated bose gas: Ideal gas and quasicondensate regimes, Prl, 96 (2006), 130403.
|
[25] |
L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, English edition, Classics in Mathematics, Springer, Berlin, 2007. |
[26] |
J. Fröhlich, T.-P. Tsai and H.-T. Yau, On a classical limit of quantum theory and the non-linear Hartree equation, GAFA 2000 (Tel Aviv, 1999). Geom. Funct. Anal., Special Volume, Part Ⅰ, (2000), 57–78.
doi: 10.1007/978-3-0346-0422-2_3. |
[27] |
M. Gaudin, The Bethe Wavefunction, Cambridge University Press, New York, 2014, Translated from the 1983 French original by Jean-Sébastien Caux.
doi: 10.1017/CBO9781107053885. |
[28] |
J. Ginibre and G. Velo,
The classical field limit of scattering theory for nonrelativistic many-boson systems. Ⅰ, Comm. Math. Phys., 66 (1979), 37-76.
doi: 10.1007/BF01197745. |
[29] |
J. Ginibre and G. Velo,
The classical field limit of scattering theory for nonrelativistic many-boson systems. Ⅱ, Comm. Math. Phys., 68 (1979), 45-68.
doi: 10.1007/BF01562541. |
[30] |
M. Girardeau,
Relationship between systems of impenetrable bosons and fermions in one dimension, J. Mathematical Phys., 1 (1960), 516-523.
doi: 10.1063/1.1703687. |
[31] |
F. Golse, On the dynamics of large particle systems in the mean field limit, In Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity, Lect. Notes Appl. Math. Mech., Springer, [Cham], 3 (2016), 1–144.
doi: 10.1007/978-3-319-26883-5_1. |
[32] |
M. Grillakis and M. Machedon,
Pair excitations and the mean field approximation of interacting bosons, Ⅰ, Comm. Math. Phys., 324 (2013), 601-636.
doi: 10.1007/s00220-013-1818-7. |
[33] |
M. Grillakis and M. Machedon,
Pair excitations and the mean field approximation of interacting bosons, Ⅱ, Comm. Partial Differential Equations, 42 (2017), 24-67.
doi: 10.1080/03605302.2016.1255228. |
[34] |
M. Grillakis, M. Machedon and D. Margetis,
Second-order corrections to mean field evolution of weakly interacting bosons. Ⅱ, Adv. Math., 228 (2011), 1788-1815.
doi: 10.1016/j.aim.2011.06.028. |
[35] |
M. G. Grillakis, M. Machedon and D. Margetis,
Second-order corrections to mean field evolution of weakly interacting bosons. Ⅰ, Comm. Math. Phys., 294 (2010), 273-301.
doi: 10.1007/s00220-009-0933-y. |
[36] |
B. Harrop-Griffiths, R. Killip and M. Visan, Sharp well-posedness for the cubic NLS and mKdV in $H^s(\mathbb{R})$, arXiv preprint, arXiv: 2003.05011. |
[37] |
K. Hepp,
The classical limit for quantum mechanical correlation functions, Comm. Math. Phys., 35 (1974), 265-277.
doi: 10.1007/BF01646348. |
[38] |
A. D. Jackson and G. M. Kavoulakis,
Lieb mode in a quasi-one-dimensional bose-einstein condensate of atoms, Prl, 89 (2002), 070403.
|
[39] |
M. Jeblick, N. Leopold and P. Pickl,
Derivation of the time dependent Gross-Pitaevskii equation in two dimensions, Comm. Math. Phys., 372 (2019), 1-69.
doi: 10.1007/s00220-019-03599-x. |
[40] |
M. Jeblick and P. Pickl,
Derivation of the time dependent two dimensional focusing NLS equation, J. Stat. Phys., 172 (2018), 1398-1426.
doi: 10.1007/s10955-018-2095-9. |
[41] |
R. Killip, M. Vișan and X. Zhang,
Low regularity conservation laws for integrable PDE, Geom. Funct. Anal., 28 (2018), 1062-1090.
doi: 10.1007/s00039-018-0444-0. |
[42] |
K. Kirkpatrick, B. Schlein and G. Staffilani,
Derivation of the two-dimensional nonlinear Schrödinger equation from many body quantum dynamics, Amer. J. Math., 133 (2011), 91-130.
doi: 10.1353/ajm.2011.0004. |
[43] |
S. Klainerman and M. Machedon,
On the uniqueness of solutions to the Gross-Pitaevskii hierarchy, Comm. Math. Phys., 279 (2008), 169-185.
doi: 10.1007/s00220-008-0426-4. |
[44] |
A. Knowles and P. Pickl,
Mean-field dynamics: Singular potentials and rate of convergence, Comm. Math. Phys., 298 (2010), 101-138.
doi: 10.1007/s00220-010-1010-2. |
[45] |
H. Koch and D. Tataru,
Conserved energies for the cubic nonlinear Schrödinger equation in one dimension, Duke Math. J., 167 (2018), 3207-3313.
doi: 10.1215/00127094-2018-0033. |
[46] |
M. Lewin, P. T. Nam and N. Rougerie,
Derivation of nonlinear Gibbs measures from many-body quantum mechanics, J. Éc. Polytech. Math., 2 (2015), 65-115.
doi: 10.5802/jep.18. |
[47] |
M. Lewin, P. T. Nam and N. Rougerie,
The mean-field approximation and the non-linear Schrödinger functional for trapped Bose gases, Trans. Amer. Math. Soc., 368 (2016), 6131-6157.
doi: 10.1090/tran/6537. |
[48] |
E. H. Lieb,
Exact analysis of an interacting Bose gas. Ⅱ. The excitation spectrum, Phys. Rev., 130 (1963), 1616-1624.
doi: 10.1103/PhysRev.130.1616. |
[49] |
E. H. Lieb and W. Liniger,
Exact analysis of an interacting Bose gas. Ⅰ. The general solution and the ground state, Phys. Rev., 130 (1963), 1605-1616.
doi: 10.1103/PhysRev.130.1605. |
[50] |
E. H. Lieb and R. Seiringer,
Proof of bose-einstein condensation for dilute trapped gases, Phys. Rev. Lett., 88 (2002), 170409.
doi: 10.1103/PhysRevLett.88.170409. |
[51] |
E. H. Lieb, R. Seiringer, J. P. Solovej and J. Yngvason, The Mathematics of the Bose Gas and Its Condensation, Oberwolfach Seminars, 34. Birkhäuser Verlag, Basel, 2005. |
[52] |
E. H. Lieb, R. Seiringer and J. Yngvason,
Bosons in a trap: A rigorous derivation of the gross-pitaevskii energy functional, Phys. Rev. A, 61 (2000), 043602.
doi: 10.1103/PhysRevA.61.043602. |
[53] |
E. H. Lieb, R. Seiringer and J. Yngvason,
One-dimensional bosons in three-dimensional traps, PRL, 91 (2003), 150401.
|
[54] |
E. H. Lieb, R. Seiringer and J. Yngvason,
One-dimensional behavior of dilute, trapped Bose gases, Comm. Math. Phys., 244 (2004), 347-393.
doi: 10.1007/s00220-003-0993-3. |
[55] |
E. H. Lieb and J. Yngvason,
Ground state energy of the low density bose gas, Phys. Rev. Lett., 80 (1998), 2504-2507.
doi: 10.1103/PhysRevLett.80.2504. |
[56] |
D. Mendelson, A. R. Nahmod, N. Pavlović, M. Rosenzweig and G. Staffilani, Poisson commuting energies for a system of infinitely many bosons, arXiv preprint, arXiv: 1910.06959. |
[57] |
D. Mitrouskas, Derivation of Mean Field Equations and Their Next-Order Corrections: Bosons and Fermions, PhD thesis, LMU München, 2017. |
[58] |
P. T. Nam and M. Napiórkowski,
Norm approximation for many-body quantum dynamics: Focusing case in low dimensions, Adv. Math., 350 (2019), 547-587.
doi: 10.1016/j.aim.2019.04.066. |
[59] |
M. Napiórkowski, Dynamics of interacting bosons: A compact review, arXiv preprint, arXiv: 2101.04594. |
[60] |
M. Olshanii,
Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons, Phys. Rev. Lett., 81 (1998), 938-941.
|
[61] |
M. Olshanii and V. Dunjko,
Short-distance correlation properties of the lieb-liniger system and momentum distributions of trapped one-dimensional atomic gases, PRL, 91 (2003), 090401.
|
[62] |
B. G. Pachpatte, Inequalities for Differential and Integral Equations, Mathematics in Science and Engineering, 197. Academic Press, Inc., San Diego, CA, 1998.
![]() ![]() |
[63] |
D. S. Petrov, D. M. Gangardt and G. V. Shlyapnikov,
Low-dimensional trapped gases, J. Phys. Ⅳ France, 116 (2004), 5-44.
doi: 10.1051/jp4:2004116001. |
[64] |
D. S. Petrov, G. V. Shlyapnikov and J. T. M. Walraven,
Regimes of quantum degeneracy in trapped 1D gases, Phys. Rev. Lett., 85 (2000), 3745-3749.
|
[65] |
P. Pickl,
Derivation of the time dependent Gross-Pitaevskii equation without positivity condition on the interaction, J. Stat. Phys., 140 (2010), 76-89.
doi: 10.1007/s10955-010-9981-0. |
[66] |
P. Pickl,
A simple derivation of mean field limits for quantum systems, Lett. Math. Phys., 97 (2011), 151-164.
doi: 10.1007/s11005-011-0470-4. |
[67] |
P. Pickl, Derivation of the time dependent Gross-Pitaevskii equation with external fields, Rev. Math. Phys., 27 (2015), 1550003, 45 pp.
doi: 10.1142/S0129055X15500038. |
[68] |
M. Reed and B. Simon, Methods of Modern Mathematical Physics. Ⅱ. Fourier Analysis, Self-Adjointness, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. |
[69] |
M. Reed and B. Simon, Methods of Modern Mathematical Physics. I, 2nd edition, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980. |
[70] |
S. Richard, F. Gerbier, J. H. Thywissen, M. Hugbart, P. Bouyer and A. Aspect,
Momentum spectroscopy of 1D phase fluctuations in bose-einstein condensates, PRL, 91 (2003), 010405.
|
[71] |
I. Rodnianski and B. Schlein,
Quantum fluctuations and rate of convergence towards mean field dynamics, Commun. Math. Phys., 291 (2009), 31-61.
doi: 10.1007/s00220-009-0867-4. |
[72] |
M. Rosenzweig, Mean-field convergence of point vortices without regularity, arXiv preprint, arXiv: 2004.04140. |
[73] |
M. Rosenzweig, Mean-field convergence of systems of particles with Coulomb interactions in higher dimensions without regularity, arXiv preprint, arXiv: 2010.10009. |
[74] |
N. Rougerie,
Scaling limits of bosonic ground states, from many-body to nonlinear Schrödinger, EMS Surv. Math. Sci., 7 (2020), 253-408.
doi: 10.4171/emss/40. |
[75] |
B. Schlein, Derivation of effective evolution equations from microscopic quantum dynamics, In Evol. Equations, Clay Math. Proc., Amer. Math. Soc., Providence, RI, 17 (2013), 511–572. |
[76] |
R. Seiringer and J. Yin,
The Lieb-Liniger model as a limit of dilute bosons in three dimensions, Comm. Math. Phys., 284 (2008), 459-479.
doi: 10.1007/s00220-008-0521-6. |
[77] |
R. Seiringer, J. Yngvason and V. A. Zagrebnov,
Disordered bose–einstein condensates with interaction in one dimension, Journal of Statistical Mechanics: Theory and Experiment, 2012 (2012), P11007.
doi: 10.1088/1742-5468/2012/11/p11007. |
[78] |
V. Sohinger,
A rigorous derivation of the defocusing cubic nonlinear Schrödinger equation on ${\mathbb{T}}^3$ from the dynamics of many-body quantum systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 1337-1365.
doi: 10.1016/j.anihpc.2014.09.005. |
[79] |
H. Spohn,
Kinetic equations from Hamiltonian dynamics: Markovian limits, Rev. Mod. Phys., 52 (1980), 569-615.
doi: 10.1103/RevModPhys.52.569. |
[80] |
T. Tao, Nonlinear Dispersive Equations, Local and global analysis. CBMS Regional Conference Series in Mathematics, 106. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006.
doi: 10.1090/cbms/106. |
[81] |
B. L. Tolra, K. M. O'Hara, J. H. Huckans, W. D. Phillips, S. L. Rolston and J. V. Porto,
Observation of reduced three-body recombination in a correlated 1D degenerate bose gas, Phys. Rev. Lett., 92 (2004), 190401.
|
[82] |
V. E. Zakharov and A. B. Shabat,
Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Ž. Èksper. Teoret. Fiz., 61 (1971), 118-134.
|
show all references
References:
[1] |
R. Adami, C. Bardos, F. Golse and A. Teta,
Towards a rigorous derivation of the cubic NLSE in dimension one, Asymptot. Anal., 40 (2004), 93-108.
|
[2] |
R. Adami, F. Golse and A. Teta,
Rigorous derivation of the cubic NLS in dimension one, J. Stat. Phys., 127 (2007), 1193-1220.
doi: 10.1007/s10955-006-9271-z. |
[3] |
Z. Ammari and S. Breteaux,
Propagation of chaos for many-boson systems in one dimension with a point pair-interaction, Asymptot. Anal., 76 (2012), 123-170.
doi: 10.3233/ASY-2011-1064. |
[4] |
C. Bardos, F. Golse and N. J. Mauser,
Weak coupling limit of the $N$-particle Schrödinger equation, Methods Appl. Anal., 7 (2000), 275-293.
doi: 10.4310/MAA.2000.v7.n2.a2. |
[5] |
N. Benedikter, M. Porta and B. Schlein, Effective Evolution Equations from Quantum Dynamics, SpringerBriefs in Mathematical Physics, 7. Springer, Cham, 2016.
doi: 10.1007/978-3-319-24898-1. |
[6] |
H. Bethe,
Zur theorie der metalle, Zeitschrift Für Physik, 71 (1931), 205-226.
doi: 10.1007/BF01341708. |
[7] |
L. Boßmann, Derivation of the 1d nonlinear Schrödinger equation from the 3d quantum many-body dynamics of strongly confined bosons, J. Math. Phys., 60 (2019), 031902, 30.
doi: 10.1063/1.5075514. |
[8] |
L. Boßmann, N. Pavlović, P. Pickl and A. Soffer,
Higher order corrections to the mean-field description of the dynamics of interacting Bosons, J. Stat. Phys., 178 (2020), 1362-1396.
doi: 10.1007/s10955-020-02500-8. |
[9] |
L. Boßmann and S. Teufel,
Derivation of the 1d Gross-Pitaevskii equation from the 3d quantum many-body dynamics of strongly confined bosons, Ann. Henri Poincaré, 20 (2019), 1003-1049.
doi: 10.1007/s00023-018-0738-7. |
[10] |
C. Brennecke and B. Schlein,
Gross-Pitaevskii dynamics for Bose-Einstein condensates, Anal. PDE, 12 (2019), 1513-1596.
doi: 10.2140/apde.2019.12.1513. |
[11] |
R. Carles,
Nonlinear Schrödinger equation with time dependent potential, Commun. Math. Sci., 9 (2011), 937-964.
doi: 10.4310/CMS.2011.v9.n4.a1. |
[12] |
T. Chen, C. Hainzl, N. Pavlović and R. Seiringer,
Unconditional uniqueness for the cubic Gross-Pitaevskii hierarchy via quantum de Finetti, Comm. Pure Appl. Math., 68 (2015), 1845-1884.
doi: 10.1002/cpa.21552. |
[13] |
T. Chen and N. Pavlović,
Derivation of the cubic NLS and Gross-Pitaevskii hierarchy from manybody dynamics in $d = 3$ based on spacetime norms, Ann. Henri Poincaré, 15 (2014), 543-588.
doi: 10.1007/s00023-013-0248-6. |
[14] |
X. Chen and J. Holmer,
Focusing quantum many-body dynamics: The rigorous derivation of the 1D focusing cubic nonlinear Schrödinger equation, Arch. Ration. Mech. Anal., 221 (2016), 631-676.
doi: 10.1007/s00205-016-0970-6. |
[15] |
X. Chen and J. Holmer,
The derivation of the $\Bbb T^3$ energy-critical NLS from quantum many-body dynamics, Invent. Math., 217 (2019), 433-547.
doi: 10.1007/s00222-019-00868-3. |
[16] |
J. Chong, Dynamics of large boson systems with attractive interaction and a derivation of the cubic focusing NLS in $\mathbb{R}^3$, J. Math. Phys., 62 (2021), Paper No. 042106, 38 pp.
doi: 10.1063/1.5099113. |
[17] |
S. Dettmer, D. Hellweg, P. Ryytty, J. J. Arlt, W. Ertmer, K. Sengstock, D. S. Petrov, G. V. Shlyapnikov, H. Kreutzmann, L. Santos and M. Lewenstein,
Observation of phase fluctuations in elongated bose-einstein condensates, Phys. Rev. Lett., 87 (2001), 160406.
|
[18] |
V. Dunjko, V. Lorent and M. Olshanii,
Bosons in cigar-shaped traps: Thomas-fermi regime, tonks-girardeau regime, and in between, Phys. Rev. Lett., 86 (2001), 5413-5416.
|
[19] |
L. Erdös, B. Schlein and H.-T. Yau,
Derivation of the Gross-Pitaevskii hierarchy for the dynamics of Bose-Einstein condensate, Comm. Pure Appl. Math., 59 (2006), 1659-1741.
doi: 10.1002/cpa.20123. |
[20] |
L. Erdös, B. Schlein and H.-T. Yau,
Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems, Invent. Math., 167 (2007), 515-614.
doi: 10.1007/s00222-006-0022-1. |
[21] |
L. Erdös, B. Schlein and H.-T. Yau,
Rigorous derivation of the Gross-Pitaevskii equation with a large interaction potential, J. Amer. Math. Soc., 22 (2009), 1099-1156.
doi: 10.1090/S0894-0347-09-00635-3. |
[22] |
L. Erdös, B. Schlein and H.-T. Yau,
Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate, Ann. of Math., 172 (2010), 291-370.
doi: 10.4007/annals.2010.172.291. |
[23] |
L. Erdös and H.-T. Yau,
Derivation of the nonlinear Schrödinger equation from a many body Coulomb system, Adv. Theor. Math. Phys., 5 (2001), 1169-1205.
doi: 10.4310/ATMP.2001.v5.n6.a6. |
[24] |
J. Esteve, J. B. Trebbia, T. Schumm, A. Aspect, C. I. Westbrook and I. Bouchoule,
Observations of density fluctuations in an elongated bose gas: Ideal gas and quasicondensate regimes, Prl, 96 (2006), 130403.
|
[25] |
L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, English edition, Classics in Mathematics, Springer, Berlin, 2007. |
[26] |
J. Fröhlich, T.-P. Tsai and H.-T. Yau, On a classical limit of quantum theory and the non-linear Hartree equation, GAFA 2000 (Tel Aviv, 1999). Geom. Funct. Anal., Special Volume, Part Ⅰ, (2000), 57–78.
doi: 10.1007/978-3-0346-0422-2_3. |
[27] |
M. Gaudin, The Bethe Wavefunction, Cambridge University Press, New York, 2014, Translated from the 1983 French original by Jean-Sébastien Caux.
doi: 10.1017/CBO9781107053885. |
[28] |
J. Ginibre and G. Velo,
The classical field limit of scattering theory for nonrelativistic many-boson systems. Ⅰ, Comm. Math. Phys., 66 (1979), 37-76.
doi: 10.1007/BF01197745. |
[29] |
J. Ginibre and G. Velo,
The classical field limit of scattering theory for nonrelativistic many-boson systems. Ⅱ, Comm. Math. Phys., 68 (1979), 45-68.
doi: 10.1007/BF01562541. |
[30] |
M. Girardeau,
Relationship between systems of impenetrable bosons and fermions in one dimension, J. Mathematical Phys., 1 (1960), 516-523.
doi: 10.1063/1.1703687. |
[31] |
F. Golse, On the dynamics of large particle systems in the mean field limit, In Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity, Lect. Notes Appl. Math. Mech., Springer, [Cham], 3 (2016), 1–144.
doi: 10.1007/978-3-319-26883-5_1. |
[32] |
M. Grillakis and M. Machedon,
Pair excitations and the mean field approximation of interacting bosons, Ⅰ, Comm. Math. Phys., 324 (2013), 601-636.
doi: 10.1007/s00220-013-1818-7. |
[33] |
M. Grillakis and M. Machedon,
Pair excitations and the mean field approximation of interacting bosons, Ⅱ, Comm. Partial Differential Equations, 42 (2017), 24-67.
doi: 10.1080/03605302.2016.1255228. |
[34] |
M. Grillakis, M. Machedon and D. Margetis,
Second-order corrections to mean field evolution of weakly interacting bosons. Ⅱ, Adv. Math., 228 (2011), 1788-1815.
doi: 10.1016/j.aim.2011.06.028. |
[35] |
M. G. Grillakis, M. Machedon and D. Margetis,
Second-order corrections to mean field evolution of weakly interacting bosons. Ⅰ, Comm. Math. Phys., 294 (2010), 273-301.
doi: 10.1007/s00220-009-0933-y. |
[36] |
B. Harrop-Griffiths, R. Killip and M. Visan, Sharp well-posedness for the cubic NLS and mKdV in $H^s(\mathbb{R})$, arXiv preprint, arXiv: 2003.05011. |
[37] |
K. Hepp,
The classical limit for quantum mechanical correlation functions, Comm. Math. Phys., 35 (1974), 265-277.
doi: 10.1007/BF01646348. |
[38] |
A. D. Jackson and G. M. Kavoulakis,
Lieb mode in a quasi-one-dimensional bose-einstein condensate of atoms, Prl, 89 (2002), 070403.
|
[39] |
M. Jeblick, N. Leopold and P. Pickl,
Derivation of the time dependent Gross-Pitaevskii equation in two dimensions, Comm. Math. Phys., 372 (2019), 1-69.
doi: 10.1007/s00220-019-03599-x. |
[40] |
M. Jeblick and P. Pickl,
Derivation of the time dependent two dimensional focusing NLS equation, J. Stat. Phys., 172 (2018), 1398-1426.
doi: 10.1007/s10955-018-2095-9. |
[41] |
R. Killip, M. Vișan and X. Zhang,
Low regularity conservation laws for integrable PDE, Geom. Funct. Anal., 28 (2018), 1062-1090.
doi: 10.1007/s00039-018-0444-0. |
[42] |
K. Kirkpatrick, B. Schlein and G. Staffilani,
Derivation of the two-dimensional nonlinear Schrödinger equation from many body quantum dynamics, Amer. J. Math., 133 (2011), 91-130.
doi: 10.1353/ajm.2011.0004. |
[43] |
S. Klainerman and M. Machedon,
On the uniqueness of solutions to the Gross-Pitaevskii hierarchy, Comm. Math. Phys., 279 (2008), 169-185.
doi: 10.1007/s00220-008-0426-4. |
[44] |
A. Knowles and P. Pickl,
Mean-field dynamics: Singular potentials and rate of convergence, Comm. Math. Phys., 298 (2010), 101-138.
doi: 10.1007/s00220-010-1010-2. |
[45] |
H. Koch and D. Tataru,
Conserved energies for the cubic nonlinear Schrödinger equation in one dimension, Duke Math. J., 167 (2018), 3207-3313.
doi: 10.1215/00127094-2018-0033. |
[46] |
M. Lewin, P. T. Nam and N. Rougerie,
Derivation of nonlinear Gibbs measures from many-body quantum mechanics, J. Éc. Polytech. Math., 2 (2015), 65-115.
doi: 10.5802/jep.18. |
[47] |
M. Lewin, P. T. Nam and N. Rougerie,
The mean-field approximation and the non-linear Schrödinger functional for trapped Bose gases, Trans. Amer. Math. Soc., 368 (2016), 6131-6157.
doi: 10.1090/tran/6537. |
[48] |
E. H. Lieb,
Exact analysis of an interacting Bose gas. Ⅱ. The excitation spectrum, Phys. Rev., 130 (1963), 1616-1624.
doi: 10.1103/PhysRev.130.1616. |
[49] |
E. H. Lieb and W. Liniger,
Exact analysis of an interacting Bose gas. Ⅰ. The general solution and the ground state, Phys. Rev., 130 (1963), 1605-1616.
doi: 10.1103/PhysRev.130.1605. |
[50] |
E. H. Lieb and R. Seiringer,
Proof of bose-einstein condensation for dilute trapped gases, Phys. Rev. Lett., 88 (2002), 170409.
doi: 10.1103/PhysRevLett.88.170409. |
[51] |
E. H. Lieb, R. Seiringer, J. P. Solovej and J. Yngvason, The Mathematics of the Bose Gas and Its Condensation, Oberwolfach Seminars, 34. Birkhäuser Verlag, Basel, 2005. |
[52] |
E. H. Lieb, R. Seiringer and J. Yngvason,
Bosons in a trap: A rigorous derivation of the gross-pitaevskii energy functional, Phys. Rev. A, 61 (2000), 043602.
doi: 10.1103/PhysRevA.61.043602. |
[53] |
E. H. Lieb, R. Seiringer and J. Yngvason,
One-dimensional bosons in three-dimensional traps, PRL, 91 (2003), 150401.
|
[54] |
E. H. Lieb, R. Seiringer and J. Yngvason,
One-dimensional behavior of dilute, trapped Bose gases, Comm. Math. Phys., 244 (2004), 347-393.
doi: 10.1007/s00220-003-0993-3. |
[55] |
E. H. Lieb and J. Yngvason,
Ground state energy of the low density bose gas, Phys. Rev. Lett., 80 (1998), 2504-2507.
doi: 10.1103/PhysRevLett.80.2504. |
[56] |
D. Mendelson, A. R. Nahmod, N. Pavlović, M. Rosenzweig and G. Staffilani, Poisson commuting energies for a system of infinitely many bosons, arXiv preprint, arXiv: 1910.06959. |
[57] |
D. Mitrouskas, Derivation of Mean Field Equations and Their Next-Order Corrections: Bosons and Fermions, PhD thesis, LMU München, 2017. |
[58] |
P. T. Nam and M. Napiórkowski,
Norm approximation for many-body quantum dynamics: Focusing case in low dimensions, Adv. Math., 350 (2019), 547-587.
doi: 10.1016/j.aim.2019.04.066. |
[59] |
M. Napiórkowski, Dynamics of interacting bosons: A compact review, arXiv preprint, arXiv: 2101.04594. |
[60] |
M. Olshanii,
Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons, Phys. Rev. Lett., 81 (1998), 938-941.
|
[61] |
M. Olshanii and V. Dunjko,
Short-distance correlation properties of the lieb-liniger system and momentum distributions of trapped one-dimensional atomic gases, PRL, 91 (2003), 090401.
|
[62] |
B. G. Pachpatte, Inequalities for Differential and Integral Equations, Mathematics in Science and Engineering, 197. Academic Press, Inc., San Diego, CA, 1998.
![]() ![]() |
[63] |
D. S. Petrov, D. M. Gangardt and G. V. Shlyapnikov,
Low-dimensional trapped gases, J. Phys. Ⅳ France, 116 (2004), 5-44.
doi: 10.1051/jp4:2004116001. |
[64] |
D. S. Petrov, G. V. Shlyapnikov and J. T. M. Walraven,
Regimes of quantum degeneracy in trapped 1D gases, Phys. Rev. Lett., 85 (2000), 3745-3749.
|
[65] |
P. Pickl,
Derivation of the time dependent Gross-Pitaevskii equation without positivity condition on the interaction, J. Stat. Phys., 140 (2010), 76-89.
doi: 10.1007/s10955-010-9981-0. |
[66] |
P. Pickl,
A simple derivation of mean field limits for quantum systems, Lett. Math. Phys., 97 (2011), 151-164.
doi: 10.1007/s11005-011-0470-4. |
[67] |
P. Pickl, Derivation of the time dependent Gross-Pitaevskii equation with external fields, Rev. Math. Phys., 27 (2015), 1550003, 45 pp.
doi: 10.1142/S0129055X15500038. |
[68] |
M. Reed and B. Simon, Methods of Modern Mathematical Physics. Ⅱ. Fourier Analysis, Self-Adjointness, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. |
[69] |
M. Reed and B. Simon, Methods of Modern Mathematical Physics. I, 2nd edition, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980. |
[70] |
S. Richard, F. Gerbier, J. H. Thywissen, M. Hugbart, P. Bouyer and A. Aspect,
Momentum spectroscopy of 1D phase fluctuations in bose-einstein condensates, PRL, 91 (2003), 010405.
|
[71] |
I. Rodnianski and B. Schlein,
Quantum fluctuations and rate of convergence towards mean field dynamics, Commun. Math. Phys., 291 (2009), 31-61.
doi: 10.1007/s00220-009-0867-4. |
[72] |
M. Rosenzweig, Mean-field convergence of point vortices without regularity, arXiv preprint, arXiv: 2004.04140. |
[73] |
M. Rosenzweig, Mean-field convergence of systems of particles with Coulomb interactions in higher dimensions without regularity, arXiv preprint, arXiv: 2010.10009. |
[74] |
N. Rougerie,
Scaling limits of bosonic ground states, from many-body to nonlinear Schrödinger, EMS Surv. Math. Sci., 7 (2020), 253-408.
doi: 10.4171/emss/40. |
[75] |
B. Schlein, Derivation of effective evolution equations from microscopic quantum dynamics, In Evol. Equations, Clay Math. Proc., Amer. Math. Soc., Providence, RI, 17 (2013), 511–572. |
[76] |
R. Seiringer and J. Yin,
The Lieb-Liniger model as a limit of dilute bosons in three dimensions, Comm. Math. Phys., 284 (2008), 459-479.
doi: 10.1007/s00220-008-0521-6. |
[77] |
R. Seiringer, J. Yngvason and V. A. Zagrebnov,
Disordered bose–einstein condensates with interaction in one dimension, Journal of Statistical Mechanics: Theory and Experiment, 2012 (2012), P11007.
doi: 10.1088/1742-5468/2012/11/p11007. |
[78] |
V. Sohinger,
A rigorous derivation of the defocusing cubic nonlinear Schrödinger equation on ${\mathbb{T}}^3$ from the dynamics of many-body quantum systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 1337-1365.
doi: 10.1016/j.anihpc.2014.09.005. |
[79] |
H. Spohn,
Kinetic equations from Hamiltonian dynamics: Markovian limits, Rev. Mod. Phys., 52 (1980), 569-615.
doi: 10.1103/RevModPhys.52.569. |
[80] |
T. Tao, Nonlinear Dispersive Equations, Local and global analysis. CBMS Regional Conference Series in Mathematics, 106. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006.
doi: 10.1090/cbms/106. |
[81] |
B. L. Tolra, K. M. O'Hara, J. H. Huckans, W. D. Phillips, S. L. Rolston and J. V. Porto,
Observation of reduced three-body recombination in a correlated 1D degenerate bose gas, Phys. Rev. Lett., 92 (2004), 190401.
|
[82] |
V. E. Zakharov and A. B. Shabat,
Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Ž. Èksper. Teoret. Fiz., 61 (1971), 118-134.
|
Symbol | Definition |
There are absolute constants |
|
natural numbers, natural numbers inclusive of zero | |
duality pairing | |
Dirac's bra-ket notation: see footnote 2 | |
subscript denotes that the operator on |
|
trace on |
|
partial trace on |
|
identity operator on |
|
LL Hamiltonian and regularized LL Hamiltonian: see (1.2) and (1.15) | |
projectors |
|
projector onto subspace of |
|
operator |
|
functions |
|
functions |
|
time-dependent functional of solution |
|
shift operator on |
|
Laplacian on |
|
commutator bracket: |
Symbol | Definition |
There are absolute constants |
|
natural numbers, natural numbers inclusive of zero | |
duality pairing | |
Dirac's bra-ket notation: see footnote 2 | |
subscript denotes that the operator on |
|
trace on |
|
partial trace on |
|
identity operator on |
|
LL Hamiltonian and regularized LL Hamiltonian: see (1.2) and (1.15) | |
projectors |
|
projector onto subspace of |
|
operator |
|
functions |
|
functions |
|
time-dependent functional of solution |
|
shift operator on |
|
Laplacian on |
|
commutator bracket: |
[1] |
Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic and Related Models, 2021, 14 (3) : 429-468. doi: 10.3934/krm.2021011 |
[2] |
Rong Yang, Li Chen. Mean-field limit for a collision-avoiding flocking system and the time-asymptotic flocking dynamics for the kinetic equation. Kinetic and Related Models, 2014, 7 (2) : 381-400. doi: 10.3934/krm.2014.7.381 |
[3] |
Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. Uniform stability and mean-field limit for the augmented Kuramoto model. Networks and Heterogeneous Media, 2018, 13 (2) : 297-322. doi: 10.3934/nhm.2018013 |
[4] |
Claude Bardos, François Golse, Peter Markowich, Thierry Paul. On the classical limit of the Schrödinger equation. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5689-5709. doi: 10.3934/dcds.2015.35.5689 |
[5] |
Seung-Yeal Ha, Jeongho Kim, Peter Pickl, Xiongtao Zhang. A probabilistic approach for the mean-field limit to the Cucker-Smale model with a singular communication. Kinetic and Related Models, 2019, 12 (5) : 1045-1067. doi: 10.3934/krm.2019039 |
[6] |
Seung-Yeal Ha, Jeongho Kim, Xiongtao Zhang. Uniform stability of the Cucker-Smale model and its application to the Mean-Field limit. Kinetic and Related Models, 2018, 11 (5) : 1157-1181. doi: 10.3934/krm.2018045 |
[7] |
Hyunjin Ahn, Seung-Yeal Ha, Jeongho Kim. Uniform stability of the relativistic Cucker-Smale model and its application to a mean-field limit. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4209-4237. doi: 10.3934/cpaa.2021156 |
[8] |
Patrick Gerard, Christophe Pallard. A mean-field toy model for resonant transport. Kinetic and Related Models, 2010, 3 (2) : 299-309. doi: 10.3934/krm.2010.3.299 |
[9] |
D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563 |
[10] |
Gerasimenko Viktor. Heisenberg picture of quantum kinetic evolution in mean-field limit. Kinetic and Related Models, 2011, 4 (1) : 385-399. doi: 10.3934/krm.2011.4.385 |
[11] |
Michael Herty, Mattia Zanella. Performance bounds for the mean-field limit of constrained dynamics. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 2023-2043. doi: 10.3934/dcds.2017086 |
[12] |
Nastassia Pouradier Duteil. Mean-field limit of collective dynamics with time-varying weights. Networks and Heterogeneous Media, 2022, 17 (2) : 129-161. doi: 10.3934/nhm.2022001 |
[13] |
Alex H. Ardila. Stability of standing waves for a nonlinear SchrÖdinger equation under an external magnetic field. Communications on Pure and Applied Analysis, 2018, 17 (1) : 163-175. doi: 10.3934/cpaa.2018010 |
[14] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure and Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[15] |
Jaime Angulo Pava, César A. Hernández Melo. On stability properties of the Cubic-Quintic Schródinger equation with $\delta$-point interaction. Communications on Pure and Applied Analysis, 2019, 18 (4) : 2093-2116. doi: 10.3934/cpaa.2019094 |
[16] |
Pavel I. Naumkin, Isahi Sánchez-Suárez. On the critical nongauge invariant nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 807-834. doi: 10.3934/dcds.2011.30.807 |
[17] |
Tarek Saanouni. Remarks on the damped nonlinear Schrödinger equation. Evolution Equations and Control Theory, 2020, 9 (3) : 721-732. doi: 10.3934/eect.2020030 |
[18] |
Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003 |
[19] |
Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063 |
[20] |
Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete and Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]