- Previous Article
- DCDS Home
- This Issue
-
Next Article
A Cantor dynamical system is slow if and only if all its finite orbits are attracting
Local well-posedness for the Maxwell-Dirac system in temporal gauge
Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaußstr. 20 42119 Wuppertal, Germany |
$ \begin{align*} \partial^{\mu} F_{\mu \nu} & = - \langle \psi, \alpha_{\nu} \psi \rangle \ \\ -i \alpha^{\mu} \partial_{\mu} \psi & = A_{\mu} \alpha^{\mu} \psi \, , \end{align*} $ |
$ F_{\mu \nu} = \partial^{\mu} A_{\nu} - \partial^{\nu} A_{\mu} $ |
$ \alpha^{\mu} $ |
$ A_0 = 0 $ |
References:
[1] |
P. d'Ancona, D. Foschi and S. Selberg,
Atlas of products for wave-Sobolev spaces on $\mathbb{R}^{1+3}$, Trans. Amer. Math. Soc., 364 (2012), 31-63.
doi: 10.1090/S0002-9947-2011-05250-5. |
[2] |
P. d'Ancona, D. Foschi and S. Selberg,
Null structure and almost optimal local well-posedness of the Maxwell-Dirac system, Amer. J. Math., 132 (2010), 771-839.
doi: 10.1353/ajm.0.0118. |
[3] |
P. d'Ancona and S. Selberg,
Global well-posedness of the Maxwell-Dirac system in two space dimensions, J. Funct. Anal., 260 (2011), 2300-2365.
doi: 10.1016/j.jfa.2010.12.010. |
[4] |
N. Bournaveas,
Local existence for the Maxwell-Dirac equations in three space dimensions, Comm. Partial Differential Equations, 21 (1996), 693-720.
doi: 10.1080/03605309608821204. |
[5] |
H. Huh and S.-J. Oh,
Low regularity solutions to the Chern-Simons-Dirac and the Chern-Simons-Higgs equations in the Lorenz gauge, Comm. Partial Differential Equations, 41 (2016), 375-397.
doi: 10.1080/03605302.2015.1132730. |
[6] |
S. Klainerman and M. Machedon, (with appendices by J. Bourgain and D. Tataru), Remark on strichartz-type inequalities, Internat. Math. Res. Notices, (1996), 201–220.
doi: 10.1155/S1073792896000153. |
[7] |
S. Klainerman and M. Machedon,
On the Maxwell-Klein-Gordon equation with finite energy, Duke Math. J., 74 (1994), 19-44.
doi: 10.1215/S0012-7094-94-07402-4. |
[8] |
S. Klainerman and S. Selberg,
Bilinear estimates and applications to nonlinear wave equations, Commun. Contemp. Math., 4 (2002), 223-295.
doi: 10.1142/S0219199702000634. |
[9] |
N. Masmoudi and K. Nakanishi,
Nonrelativistic limit from Maxwell-Klein-Gordon and Maxwell-Dirac to Poisson-Schrödinger, Int. Math. Res. No., 13 (2003), 697-734.
doi: 10.1155/S107379280320310X. |
[10] |
N. Masmoudi and K. Nakanishi,
Uniqueness of finite energy solutions for Maxwell-Dirac and Maxwell-Klein-Gordon equations, Commun. Math. Phys., 243 (2003), 123-136.
doi: 10.1007/s00220-003-0951-0. |
[11] |
S. Selberg, Anisotropic bilinear $L^2$ estimates related to the 3D wave equation, Int. Math. Res. Not. IMRN, (2008), Art. ID rnn 107, 63 pp.
doi: 10.1093/imrn/rnn107. |
[12] |
S. Selberg and A. Tesfahun,
Null structure and local well-posedness in the energy class for the Yang-Mills equations in Lorenz gauge, J. Eur. Math. Soc., 18 (2016), 1729-1752.
doi: 10.4171/JEMS/627. |
[13] |
S. Selberg and A. Tesfahun, Ill-posedness of the Maxwell-Dirac system below charge in space dimension three and lower, Nonlinear Differential Equations Appl., 28 (2021), Paper No. 42, 20 pp.
doi: 10.1007/s00030-021-00703-w. |
[14] |
S. Selberg and A. Tesfahun,
Finite-energy global well-posedness of the Maxwell-Klein-Gordon system in Lorenz gauge, Comm. PDE, 35 (2010), 1029-1057.
|
[15] |
T. Tao,
Local well-posedness of the Yang-Mills equation in the temporal gauge below the energy norm, J. Diff. Equ., 189 (2003), 366-382.
|
[16] |
T. Tao,
Multilinear weighted convolution of $L^2$-functions and applications to non-linear dispersive equations, Amer. J. Math., 123 (2001), 838-908.
doi: 10.1353/ajm.2001.0035. |
show all references
References:
[1] |
P. d'Ancona, D. Foschi and S. Selberg,
Atlas of products for wave-Sobolev spaces on $\mathbb{R}^{1+3}$, Trans. Amer. Math. Soc., 364 (2012), 31-63.
doi: 10.1090/S0002-9947-2011-05250-5. |
[2] |
P. d'Ancona, D. Foschi and S. Selberg,
Null structure and almost optimal local well-posedness of the Maxwell-Dirac system, Amer. J. Math., 132 (2010), 771-839.
doi: 10.1353/ajm.0.0118. |
[3] |
P. d'Ancona and S. Selberg,
Global well-posedness of the Maxwell-Dirac system in two space dimensions, J. Funct. Anal., 260 (2011), 2300-2365.
doi: 10.1016/j.jfa.2010.12.010. |
[4] |
N. Bournaveas,
Local existence for the Maxwell-Dirac equations in three space dimensions, Comm. Partial Differential Equations, 21 (1996), 693-720.
doi: 10.1080/03605309608821204. |
[5] |
H. Huh and S.-J. Oh,
Low regularity solutions to the Chern-Simons-Dirac and the Chern-Simons-Higgs equations in the Lorenz gauge, Comm. Partial Differential Equations, 41 (2016), 375-397.
doi: 10.1080/03605302.2015.1132730. |
[6] |
S. Klainerman and M. Machedon, (with appendices by J. Bourgain and D. Tataru), Remark on strichartz-type inequalities, Internat. Math. Res. Notices, (1996), 201–220.
doi: 10.1155/S1073792896000153. |
[7] |
S. Klainerman and M. Machedon,
On the Maxwell-Klein-Gordon equation with finite energy, Duke Math. J., 74 (1994), 19-44.
doi: 10.1215/S0012-7094-94-07402-4. |
[8] |
S. Klainerman and S. Selberg,
Bilinear estimates and applications to nonlinear wave equations, Commun. Contemp. Math., 4 (2002), 223-295.
doi: 10.1142/S0219199702000634. |
[9] |
N. Masmoudi and K. Nakanishi,
Nonrelativistic limit from Maxwell-Klein-Gordon and Maxwell-Dirac to Poisson-Schrödinger, Int. Math. Res. No., 13 (2003), 697-734.
doi: 10.1155/S107379280320310X. |
[10] |
N. Masmoudi and K. Nakanishi,
Uniqueness of finite energy solutions for Maxwell-Dirac and Maxwell-Klein-Gordon equations, Commun. Math. Phys., 243 (2003), 123-136.
doi: 10.1007/s00220-003-0951-0. |
[11] |
S. Selberg, Anisotropic bilinear $L^2$ estimates related to the 3D wave equation, Int. Math. Res. Not. IMRN, (2008), Art. ID rnn 107, 63 pp.
doi: 10.1093/imrn/rnn107. |
[12] |
S. Selberg and A. Tesfahun,
Null structure and local well-posedness in the energy class for the Yang-Mills equations in Lorenz gauge, J. Eur. Math. Soc., 18 (2016), 1729-1752.
doi: 10.4171/JEMS/627. |
[13] |
S. Selberg and A. Tesfahun, Ill-posedness of the Maxwell-Dirac system below charge in space dimension three and lower, Nonlinear Differential Equations Appl., 28 (2021), Paper No. 42, 20 pp.
doi: 10.1007/s00030-021-00703-w. |
[14] |
S. Selberg and A. Tesfahun,
Finite-energy global well-posedness of the Maxwell-Klein-Gordon system in Lorenz gauge, Comm. PDE, 35 (2010), 1029-1057.
|
[15] |
T. Tao,
Local well-posedness of the Yang-Mills equation in the temporal gauge below the energy norm, J. Diff. Equ., 189 (2003), 366-382.
|
[16] |
T. Tao,
Multilinear weighted convolution of $L^2$-functions and applications to non-linear dispersive equations, Amer. J. Math., 123 (2001), 838-908.
doi: 10.1353/ajm.2001.0035. |
[1] |
Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure and Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673 |
[2] |
Magdalena Czubak, Nina Pikula. Low regularity well-posedness for the 2D Maxwell-Klein-Gordon equation in the Coulomb gauge. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1669-1683. doi: 10.3934/cpaa.2014.13.1669 |
[3] |
Jianjun Yuan. On the well-posedness of Maxwell-Chern-Simons-Higgs system in the Lorenz gauge. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2389-2403. doi: 10.3934/dcds.2014.34.2389 |
[4] |
Nikolaos Bournaveas. Local well-posedness for a nonlinear dirac equation in spaces of almost critical dimension. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 605-616. doi: 10.3934/dcds.2008.20.605 |
[5] |
Hartmut Pecher. Corrigendum of "Local well-posedness for the nonlinear Dirac equation in two space dimensions". Communications on Pure and Applied Analysis, 2015, 14 (2) : 737-742. doi: 10.3934/cpaa.2015.14.737 |
[6] |
Hartmut Pecher. Almost optimal local well-posedness for the Maxwell-Klein-Gordon system with data in Fourier-Lebesgue spaces. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3303-3321. doi: 10.3934/cpaa.2020146 |
[7] |
Jishan Fan, Yueling Jia. Local well-posedness of the full compressible Navier-Stokes-Maxwell system with vacuum. Kinetic and Related Models, 2018, 11 (1) : 97-106. doi: 10.3934/krm.2018005 |
[8] |
Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007 |
[9] |
Jianjun Yuan. Global solutions of two coupled Maxwell systems in the temporal gauge. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1709-1719. doi: 10.3934/dcds.2016.36.1709 |
[10] |
Christopher Henderson, Stanley Snelson, Andrei Tarfulea. Local well-posedness of the Boltzmann equation with polynomially decaying initial data. Kinetic and Related Models, 2020, 13 (4) : 837-867. doi: 10.3934/krm.2020029 |
[11] |
Yong Zhou, Jishan Fan. Local well-posedness for the ideal incompressible density dependent magnetohydrodynamic equations. Communications on Pure and Applied Analysis, 2010, 9 (3) : 813-818. doi: 10.3934/cpaa.2010.9.813 |
[12] |
Caochuan Ma, Zaihong Jiang, Renhui Wan. Local well-posedness for the tropical climate model with fractional velocity diffusion. Kinetic and Related Models, 2016, 9 (3) : 551-570. doi: 10.3934/krm.2016006 |
[13] |
Timur Akhunov. Local well-posedness of quasi-linear systems generalizing KdV. Communications on Pure and Applied Analysis, 2013, 12 (2) : 899-921. doi: 10.3934/cpaa.2013.12.899 |
[14] |
Hung Luong. Local well-posedness for the Zakharov system on the background of a line soliton. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2657-2682. doi: 10.3934/cpaa.2018126 |
[15] |
Jae Min Lee, Stephen C. Preston. Local well-posedness of the Camassa-Holm equation on the real line. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3285-3299. doi: 10.3934/dcds.2017139 |
[16] |
Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations I: Local well-posedness. Evolution Equations and Control Theory, 2012, 1 (1) : 195-215. doi: 10.3934/eect.2012.1.195 |
[17] |
Yongye Zhao, Yongsheng Li, Wei Yan. Local Well-posedness and Persistence Property for the Generalized Novikov Equation. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 803-820. doi: 10.3934/dcds.2014.34.803 |
[18] |
Lassaad Aloui, Slim Tayachi. Local well-posedness for the inhomogeneous nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5409-5437. doi: 10.3934/dcds.2021082 |
[19] |
Akansha Sanwal. Local well-posedness for the Zakharov system in dimension d ≤ 3. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1067-1103. doi: 10.3934/dcds.2021147 |
[20] |
Alex M. Montes, Ricardo Córdoba. Local well-posedness for a class of 1D Boussinesq systems. Mathematical Control and Related Fields, 2022, 12 (2) : 447-473. doi: 10.3934/mcrf.2021030 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]