-
Previous Article
A combinatorial approach to Rauzy-type dynamics II: The labelling method and a second proof of the KZB classification theorem
- DCDS Home
- This Issue
-
Next Article
SRB measures of singular hyperbolic attractors
Asymptotics of ODE's flow on the torus through a singleton condition and a perturbation result. Applications
Univ Rennes, INSA Rennes, CNRS, IRMAR - UMR 6625, 35000 Rennes, France |
This paper deals with the long time asymptotics of the flow $ X $ solution to the vector-valued ODE: $ X'(t, x) = b(X(t, x)) $ for $ t\in \mathbb{R} $, with $ X(0, x) = x $ a point of the torus $ Y_d $. We assume that the vector field $ b $ reads as $ \rho\, \Phi $, where $ \rho $ is a non negative regular function and $ \Phi $ is a non vanishing regular vector field in $ Y_d $. In this work, the singleton condition means that the Herman rotation set $ {\mathsf{C}}_b $ composed of the average values of $ b $ with respect to the invariant probability measures for the flow $ X $ is a singleton $ \{\zeta\} $. This first allows us to obtain the asymptotics of the flow $ X $ when $ b $ is a nonlinear current field. Then, we prove a general perturbation result assuming that $ \rho $ is the uniform limit in $ Y_d $ of a positive sequence $ (\rho_n)_{n\in \mathbb{N}} $ satisfying $ \rho\leq\rho_n $ and $ {\mathsf{C}}_{\rho_n\Phi} $ is a singleton $ \{\zeta_n\} $. It turns out that the limit set $ {\mathsf{C}}_b $ either remains a singleton, or enlarges to the closed line segment $ [0_{ \mathbb{R}^d}, \lim_n\zeta_n] $ of $ \mathbb{R}^d $. We provide various corollaries of this result according to the positivity or not of some weighted harmonic means of $ \rho $. These results are illustrated by different examples which highlight the alternative satisfied by $ {\mathsf{C}}_b $. Finally, the singleton condition allows us to homogenize the linear transport equation induced by the oscillating velocity $ b(x/{\varepsilon}) $.
References:
[1] |
G. Alessandrini and V. Nesi,
Univalent $\sigma$-harmonic mappings, Arch. Rational Mech. Anal., 158 (2001), 155-171.
doi: 10.1007/PL00004242. |
[2] |
Y. Amirat, K. Hamdache and A. Ziani,
Homogénéisation d'équations hyperboliques du premier ordre et application aux écoulements miscibles en milieu poreux, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 397-417.
doi: 10.1016/s0294-1449(16)30317-1. |
[3] |
Y. Amirat, K. Hamdache and A. Ziani,
Homogénéisation par décomposition en fréquences d'une équation de transport dans $ \mathbb{R}^n$, C. R. Acad. Sci. Paris Sér. I Math., 312 (1991), 37-40.
|
[4] |
Y. Amirat, K. Hamdache and A. Ziani,
Homogenisation of parametrised families of hyperbolic problems, Proc. Roy. Soc. Edinburgh Sect. A, 120 (1992), 199-221.
doi: 10.1017/S0308210500032091. |
[5] |
C. Baesens, J. Guckenheimer, S. Kim and R. S. MacKay,
Three coupled oscillators: Mode-locking, global bifurcations and toroidal chaos, Phys. D, 49 (1991), 387-475.
doi: 10.1016/0167-2789(91)90155-3. |
[6] |
A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, Studies in Mathematics and its Applications, 5, North-Holland Publishing Co., Amsterdam-New York, 1978. |
[7] |
Y. Brenier, Remarks on some linear hyperbolic equations with oscillatory coefficients, Proceedings of the Third International Conference on Hyperbolic Problems, (Uppsala 1990) Vol. I, II, Studentlitteratur, Lund, (1991), 119–130. |
[8] |
M. Briane, Isotropic realizability of a strain field for the two-dimensional incompressible elasticity system, Inverse Problems, 32 (2016), 065002, 22 pp.
doi: 10.1088/0266-5611/32/6/065002. |
[9] |
M. Briane,
Isotropic realizability of fields and reconstruction of invariant measures under positivity properties. Asymptotics of the flow by a nonergodic approach, SIAM J. App. Dyn. Sys., 18 (2019), 1846-1866.
doi: 10.1137/19M1240411. |
[10] |
M. Briane,
Homogenization of linear transport equations. A new approach,, J. École Polytechnique - Mathématiques, 7 (2020), 479-495.
doi: 10.5802/jep.122. |
[11] |
M. Briane, G. W. Milton and V. Nesi,
Change of sign of the corrector's determinant for homogenization in three-dimensional conductivity, Arch. Rat. Mech. Anal., 173 (2004), 133-150.
doi: 10.1007/s00205-004-0315-8. |
[12] |
M. Briane, G. W. Milton and A. Treibergs,
Which electric fields are realizable in conducting materials?, ESAIM: Math. Model. Numer. Anal., 48 (2014), 307-323.
doi: 10.1051/m2an/2013109. |
[13] |
R. Caccioppoli,
Sugli elementi uniti delle trasformazioni funzionali: Un teorema di esistenza e unicitá alcune sue applicazioni, Rend. Sem. Mat. Padova, 3 (1932), 1-15.
|
[14] |
J. Carrand, Logarithmic bounds for ergodic averages of constant type rotation number flows on the torus: a short proof, arXiv: 2012.07481, 2020. |
[15] |
I. P. Cornfeld, S. V. Fomin and Y. G. Sinaĭ, Ergodic Theory, Translated from the Russian by A.B. Sosinskii, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 245, Springer-Verlag, New York, 1982.
doi: 10.1007/978-1-4615-6927-5. |
[16] |
J. Franks, Recurrence and fixed points of surface homeomorphisms, Ergodic Theory Dynam. Systems, Charles Conley Memorial Issue, 8 (1988), 99–107.
doi: 10.1017/S0143385700009366. |
[17] |
J. Franks and M. Misiurewicz,
Rotation sets of toral flows, Proc. Amer. Math. Soc., 109 (1990), 243-249.
doi: 10.1090/S0002-9939-1990-1021217-5. |
[18] |
B. Dacorogna, Direct Methods in the Calculus of Variations, Second Edition, Applied Mathematical Sciences, 78, Springer, New York, 2008. |
[19] |
D. Fried,
The geometry of cross sections to flows, Topology, 21 (1982), 353-371.
doi: 10.1016/0040-9383(82)90017-9. |
[20] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001. |
[21] |
F. Golse, Moyennisation des champs de vecteurs et EDP, (French), [The averaging of vector fields and PDEs], Journées Équations aux Dérivées Partielles, (Saint Jean de Monts 1990), Exp. no. XVI, École Polytech. Palaiseau, 1990, 17 pp. |
[22] |
F. Golse,
Perturbations de systèmes dynamiques et moyennisation en vitesse des EDP, C. R. Acad. Sci. Paris Sér. I Math., 314 (1992), 115-120.
|
[23] |
M. R. Herman, Existence et non existence de tores invariants par des difféomorphismes symplectiques, (French), [Existence and nonexistence of tori invariant under symplectic diffeomorphisms], Séminaire sur les Équations aux Dérivées Partielles 1987-1988, XIV, École Polytech. Palaiseau, 1988, 24 pp. |
[24] |
M. W. Hirsch, S. Smale and R. L. Devaney, Differential Equations, Dynamical Systems, and an Introduction to Chaos, Second edition, Pure and Applied Mathematics, 60, Elsevier Academic Press, Amsterdam, 2004. |
[25] |
T. Y. Hou and X. Xin,
Homogenization of linear transport equations with oscillatory vector fields, SIAM J. Appl. Math., 52 (1992), 34-45.
doi: 10.1137/0152003. |
[26] |
P.-E. Jabin and A.-E. Tzavaras,
Kinetic decomposition for periodic homogenization problems, SIAM J. Math. Anal., 41 (2009), 360-390.
doi: 10.1137/080735837. |
[27] |
A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511809187. |
[28] |
A. N. Kolmogorov,
On dynamical systems with an integral invariant on the torus, Doklady Akad. Nauk SSSR (N.S.), 93 (1953), 763-766.
|
[29] |
J. Llibre and R. S. MacKay,
Rotation vectors and entropy for homeomorphisms of the torus isotopic to the identity, Ergodic Theory Dynam. Systems, 11 (1991), 115-128.
doi: 10.1017/S0143385700006040. |
[30] |
M. Misiurewicz and K. Ziemian,
Rotation sets for maps of tori, J. London Math. Soc. (2), 40 (1989), 490-506.
doi: 10.1112/jlms/s2-40.3.490. |
[31] |
R. Peirone,
Convergence of solutions of linear transport equations, Ergodic Theory Dynam. Systems, 23 (2003), 919-933.
doi: 10.1017/S014338570200144X. |
[32] |
C. L. Siegel,
Note on differential equations on the torus, Annals of Mathematics, 46 (1945), 423-428.
doi: 10.2307/1969161. |
[33] |
E. Y. Sinaĭ, Dynamical Systems II, Ergodic Theory with Applications to Dynamical Systems and Statistical Mechanics, (Translated from the Russian), Encyclopaedia of Mathematical Sciences, 2, Springer-Verlag Berlin, 1989. |
[34] |
T. Tassa,
Homogenization of two-dimensional linear flows with integral invariance, SIAM J. Appl. Math., 57 (1997), 1390-1405.
doi: 10.1137/S0036139996299820. |
[35] |
L. Tartar, Nonlocal effects induced by homogenization, Partial Differential Equations and the Calculus of Variations Vol. II, F. Colombini et al. (eds.), Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Boston, MA, 2 (1989), 925–938. |
show all references
References:
[1] |
G. Alessandrini and V. Nesi,
Univalent $\sigma$-harmonic mappings, Arch. Rational Mech. Anal., 158 (2001), 155-171.
doi: 10.1007/PL00004242. |
[2] |
Y. Amirat, K. Hamdache and A. Ziani,
Homogénéisation d'équations hyperboliques du premier ordre et application aux écoulements miscibles en milieu poreux, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 397-417.
doi: 10.1016/s0294-1449(16)30317-1. |
[3] |
Y. Amirat, K. Hamdache and A. Ziani,
Homogénéisation par décomposition en fréquences d'une équation de transport dans $ \mathbb{R}^n$, C. R. Acad. Sci. Paris Sér. I Math., 312 (1991), 37-40.
|
[4] |
Y. Amirat, K. Hamdache and A. Ziani,
Homogenisation of parametrised families of hyperbolic problems, Proc. Roy. Soc. Edinburgh Sect. A, 120 (1992), 199-221.
doi: 10.1017/S0308210500032091. |
[5] |
C. Baesens, J. Guckenheimer, S. Kim and R. S. MacKay,
Three coupled oscillators: Mode-locking, global bifurcations and toroidal chaos, Phys. D, 49 (1991), 387-475.
doi: 10.1016/0167-2789(91)90155-3. |
[6] |
A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, Studies in Mathematics and its Applications, 5, North-Holland Publishing Co., Amsterdam-New York, 1978. |
[7] |
Y. Brenier, Remarks on some linear hyperbolic equations with oscillatory coefficients, Proceedings of the Third International Conference on Hyperbolic Problems, (Uppsala 1990) Vol. I, II, Studentlitteratur, Lund, (1991), 119–130. |
[8] |
M. Briane, Isotropic realizability of a strain field for the two-dimensional incompressible elasticity system, Inverse Problems, 32 (2016), 065002, 22 pp.
doi: 10.1088/0266-5611/32/6/065002. |
[9] |
M. Briane,
Isotropic realizability of fields and reconstruction of invariant measures under positivity properties. Asymptotics of the flow by a nonergodic approach, SIAM J. App. Dyn. Sys., 18 (2019), 1846-1866.
doi: 10.1137/19M1240411. |
[10] |
M. Briane,
Homogenization of linear transport equations. A new approach,, J. École Polytechnique - Mathématiques, 7 (2020), 479-495.
doi: 10.5802/jep.122. |
[11] |
M. Briane, G. W. Milton and V. Nesi,
Change of sign of the corrector's determinant for homogenization in three-dimensional conductivity, Arch. Rat. Mech. Anal., 173 (2004), 133-150.
doi: 10.1007/s00205-004-0315-8. |
[12] |
M. Briane, G. W. Milton and A. Treibergs,
Which electric fields are realizable in conducting materials?, ESAIM: Math. Model. Numer. Anal., 48 (2014), 307-323.
doi: 10.1051/m2an/2013109. |
[13] |
R. Caccioppoli,
Sugli elementi uniti delle trasformazioni funzionali: Un teorema di esistenza e unicitá alcune sue applicazioni, Rend. Sem. Mat. Padova, 3 (1932), 1-15.
|
[14] |
J. Carrand, Logarithmic bounds for ergodic averages of constant type rotation number flows on the torus: a short proof, arXiv: 2012.07481, 2020. |
[15] |
I. P. Cornfeld, S. V. Fomin and Y. G. Sinaĭ, Ergodic Theory, Translated from the Russian by A.B. Sosinskii, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 245, Springer-Verlag, New York, 1982.
doi: 10.1007/978-1-4615-6927-5. |
[16] |
J. Franks, Recurrence and fixed points of surface homeomorphisms, Ergodic Theory Dynam. Systems, Charles Conley Memorial Issue, 8 (1988), 99–107.
doi: 10.1017/S0143385700009366. |
[17] |
J. Franks and M. Misiurewicz,
Rotation sets of toral flows, Proc. Amer. Math. Soc., 109 (1990), 243-249.
doi: 10.1090/S0002-9939-1990-1021217-5. |
[18] |
B. Dacorogna, Direct Methods in the Calculus of Variations, Second Edition, Applied Mathematical Sciences, 78, Springer, New York, 2008. |
[19] |
D. Fried,
The geometry of cross sections to flows, Topology, 21 (1982), 353-371.
doi: 10.1016/0040-9383(82)90017-9. |
[20] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001. |
[21] |
F. Golse, Moyennisation des champs de vecteurs et EDP, (French), [The averaging of vector fields and PDEs], Journées Équations aux Dérivées Partielles, (Saint Jean de Monts 1990), Exp. no. XVI, École Polytech. Palaiseau, 1990, 17 pp. |
[22] |
F. Golse,
Perturbations de systèmes dynamiques et moyennisation en vitesse des EDP, C. R. Acad. Sci. Paris Sér. I Math., 314 (1992), 115-120.
|
[23] |
M. R. Herman, Existence et non existence de tores invariants par des difféomorphismes symplectiques, (French), [Existence and nonexistence of tori invariant under symplectic diffeomorphisms], Séminaire sur les Équations aux Dérivées Partielles 1987-1988, XIV, École Polytech. Palaiseau, 1988, 24 pp. |
[24] |
M. W. Hirsch, S. Smale and R. L. Devaney, Differential Equations, Dynamical Systems, and an Introduction to Chaos, Second edition, Pure and Applied Mathematics, 60, Elsevier Academic Press, Amsterdam, 2004. |
[25] |
T. Y. Hou and X. Xin,
Homogenization of linear transport equations with oscillatory vector fields, SIAM J. Appl. Math., 52 (1992), 34-45.
doi: 10.1137/0152003. |
[26] |
P.-E. Jabin and A.-E. Tzavaras,
Kinetic decomposition for periodic homogenization problems, SIAM J. Math. Anal., 41 (2009), 360-390.
doi: 10.1137/080735837. |
[27] |
A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511809187. |
[28] |
A. N. Kolmogorov,
On dynamical systems with an integral invariant on the torus, Doklady Akad. Nauk SSSR (N.S.), 93 (1953), 763-766.
|
[29] |
J. Llibre and R. S. MacKay,
Rotation vectors and entropy for homeomorphisms of the torus isotopic to the identity, Ergodic Theory Dynam. Systems, 11 (1991), 115-128.
doi: 10.1017/S0143385700006040. |
[30] |
M. Misiurewicz and K. Ziemian,
Rotation sets for maps of tori, J. London Math. Soc. (2), 40 (1989), 490-506.
doi: 10.1112/jlms/s2-40.3.490. |
[31] |
R. Peirone,
Convergence of solutions of linear transport equations, Ergodic Theory Dynam. Systems, 23 (2003), 919-933.
doi: 10.1017/S014338570200144X. |
[32] |
C. L. Siegel,
Note on differential equations on the torus, Annals of Mathematics, 46 (1945), 423-428.
doi: 10.2307/1969161. |
[33] |
E. Y. Sinaĭ, Dynamical Systems II, Ergodic Theory with Applications to Dynamical Systems and Statistical Mechanics, (Translated from the Russian), Encyclopaedia of Mathematical Sciences, 2, Springer-Verlag Berlin, 1989. |
[34] |
T. Tassa,
Homogenization of two-dimensional linear flows with integral invariance, SIAM J. Appl. Math., 57 (1997), 1390-1405.
doi: 10.1137/S0036139996299820. |
[35] |
L. Tartar, Nonlocal effects induced by homogenization, Partial Differential Equations and the Calculus of Variations Vol. II, F. Colombini et al. (eds.), Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Boston, MA, 2 (1989), 925–938. |
[1] |
Ioana Ciotir, Nicolas Forcadel, Wilfredo Salazar. Homogenization of a stochastic viscous transport equation. Evolution Equations and Control Theory, 2021, 10 (2) : 353-364. doi: 10.3934/eect.2020070 |
[2] |
Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390 |
[3] |
Piotr Gwiazda, Sander C. Hille, Kamila Łyczek, Agnieszka Świerczewska-Gwiazda. Differentiability in perturbation parameter of measure solutions to perturbed transport equation. Kinetic and Related Models, 2019, 12 (5) : 1093-1108. doi: 10.3934/krm.2019041 |
[4] |
Grégoire Allaire, Harsha Hutridurga. On the homogenization of multicomponent transport. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2527-2551. doi: 10.3934/dcdsb.2015.20.2527 |
[5] |
Giuseppe Da Prato. An integral inequality for the invariant measure of some finite dimensional stochastic differential equation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3015-3027. doi: 10.3934/dcdsb.2016085 |
[6] |
Yan Wang, Guanggan Chen. Invariant measure of stochastic fractional Burgers equation with degenerate noise on a bounded interval. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3121-3135. doi: 10.3934/cpaa.2019140 |
[7] |
Jan Bouwe van den Berg, Gabriel William Duchesne, Jean-Philippe Lessard. Rotation invariant patterns for a nonlinear Laplace-Beltrami equation: A Taylor-Chebyshev series approach. Journal of Computational Dynamics, 2022, 9 (2) : 253-278. doi: 10.3934/jcd.2022005 |
[8] |
Jawad Al-Khal, Henk Bruin, Michael Jakobson. New examples of S-unimodal maps with a sigma-finite absolutely continuous invariant measure. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 35-61. doi: 10.3934/dcds.2008.22.35 |
[9] |
Ammari Zied, Liard Quentin. On uniqueness of measure-valued solutions to Liouville's equation of Hamiltonian PDEs. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 723-748. doi: 10.3934/dcds.2018032 |
[10] |
Fabio Camilli, Raul De Maio. Memory effects in measure transport equations. Kinetic and Related Models, 2019, 12 (6) : 1229-1245. doi: 10.3934/krm.2019047 |
[11] |
Katja Polotzek, Kathrin Padberg-Gehle, Tobias Jäger. Set-oriented numerical computation of rotation sets. Journal of Computational Dynamics, 2017, 4 (1&2) : 119-141. doi: 10.3934/jcd.2017004 |
[12] |
Tiago Carvalho, Luiz Fernando Gonçalves. A flow on $ S^2 $ presenting the ball as its minimal set. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4263-4280. doi: 10.3934/dcdsb.2020287 |
[13] |
Ingrid Beltiţă, Anders Melin. The quadratic contribution to the backscattering transform in the rotation invariant case. Inverse Problems and Imaging, 2010, 4 (4) : 599-618. doi: 10.3934/ipi.2010.4.599 |
[14] |
Chuchu Chen, Jialin Hong, Yulan Lu. Stochastic differential equation with piecewise continuous arguments: Markov property, invariant measure and numerical approximation. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022098 |
[15] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[16] |
Ugur G. Abdulla. Wiener's criterion at $\infty$ for the heat equation and its measure-theoretical counterpart. Electronic Research Announcements, 2008, 15: 44-51. doi: 10.3934/era.2008.15.44 |
[17] |
Rui Kuang, Xiangdong Ye. The return times set and mixing for measure preserving transformations. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 817-827. doi: 10.3934/dcds.2007.18.817 |
[18] |
Mieczysław Cichoń, Bianca Satco. On the properties of solutions set for measure driven differential inclusions. Conference Publications, 2015, 2015 (special) : 287-296. doi: 10.3934/proc.2015.0287 |
[19] |
Jonathan C. Mattingly, Etienne Pardoux. Invariant measure selection by noise. An example. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4223-4257. doi: 10.3934/dcds.2014.34.4223 |
[20] |
Luis Barreira and Jorg Schmeling. Invariant sets with zero measure and full Hausdorff dimension. Electronic Research Announcements, 1997, 3: 114-118. |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]