
-
Previous Article
On decomposition of ambient surfaces admitting $ A $-diffeomorphisms with non-trivial attractors and repellers
- DCDS Home
- This Issue
-
Next Article
A combinatorial approach to Rauzy-type dynamics II: The labelling method and a second proof of the KZB classification theorem
On a class of singularly perturbed elliptic systems with asymptotic phase segregation
1. | CAMGSD, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal |
2. | Department Mathematik, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen (FAU), Germany |
3. | Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran |
This work is devoted to study a class of singular perturbed elliptic systems and their singular limit to a phase segregating system. We prove existence and uniqueness and study the asymptotic behavior of limiting problem as the interaction rate tends to infinity. The limiting problem is a free boundary problem such that at each point in the domain at least one of the components is zero, which implies that all components can not coexist simultaneously. We present a novel method, which provides an explicit solution of the limiting problem for a special choice of parameters. Moreover, we present some numerical simulations of the asymptotic problem.
References:
[1] |
A. Arakelyan,
Convergence of the finite difference scheme for a general class of the spatial segregation of reaction-diffusion systems, Comput. Math. Appl., 75 (2018), 4232-4240.
doi: 10.1016/j.camwa.2018.03.025. |
[2] |
A. Arakelyan and F. Bozorgnia,
On the uniqueness of the limiting solution to a strongly competing system, Electronic J. Differential Equations, 96 (2017), 1-8.
|
[3] |
F. Bozorgnia,
Numerical algorithms for the spatial segregation of competitive systems, SIAM J. Sci. Comput., 31 (2009), 3946-3958.
doi: 10.1137/080722588. |
[4] |
F. Bozorgnia and A. Arakelyan,
Numerical algorithms for a variational problem of the spatial segregation of reaction-diffusion systems, Appl. Math. Comput., 219 (2013), 8863-8875.
doi: 10.1016/j.amc.2013.03.074. |
[5] |
L. A. Caffarelli and A. Friedman,
Partial regularity of the zero-set of solutions of linear and superlinear elliptic equations, J. Differential Equations, 60 (1985), 420-433.
doi: 10.1016/0022-0396(85)90133-0. |
[6] |
L. A. Caffarelli and F.-H. Lin,
Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries, J. Amer. Math. Soc., 21 (2008), 847-862.
doi: 10.1090/S0894-0347-08-00593-6. |
[7] |
L. A. Caffarelli and J.-M. Roquejoffre,
Uniform Hölder estimate in a class of elliptic systems and applications to singular limits in models for diffusion flames, Arch. Ration. Mech. Anal., 183 (2007), 457-487.
doi: 10.1007/s00205-006-0013-9. |
[8] |
M. Conti, S. Terracini and G. Verzini,
Uniqueness and least energy property for solutions to strongly competing systems, Interfaces Free Boundaries, 8 (2006), 437-446.
doi: 10.4171/IFB/150. |
[9] |
E. C. M. Crooks, E. N. Dancer and D. Hilhorst,
On long-term dynamics for competition-diffusion system with inhomogeneous dirichlet boundary conditions, Topol. Methods Nonlinear Anal., 30 (2007), 1-36.
|
[10] |
E. N. Dancer and Y. H. Du,
Competing species equations with diffusion, large interactions, and jumping nonlinearities, J. Differential Equations, 114 (1994), 434-475.
doi: 10.1006/jdeq.1994.1156. |
[11] |
J. W. Dold,
Flame propagation in a nonuniform mixture: Analysis of a slowly varying triple flame, Comb. Flame., 76 (1989), 71-88.
doi: 10.1016/0010-2180(89)90079-5. |
[12] |
S-I. Ei and E. Yanagida,
Dynamics of interfaces in competition-diffusion systems, SIAM J. Appl. Math., 54 (1994), 1355-1373.
doi: 10.1137/S0036139993247343. |
[13] |
E. Giusti and M. Giaquinta, Global $C^{1, \alpha}$-regularity for second order quasilinear elliptic euqations in divergence form, Journal für die Reine und Angewandte Mathematik, 351 (1984), 55–65. |
[14] |
P. W. Schaefer,
Some maximum principles in semilinear elliptic equations, Proceedings of the American Mathematical Society, 98 (1986), 97-102.
doi: 10.1090/S0002-9939-1986-0848884-X. |
[15] |
K. Wang and Z. Zhang,
Some new results in competing systems with many species, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 739-776.
doi: 10.1016/j.anihpc.2009.11.004. |
[16] |
F. A. Williams, Combustion Theory: The Fundamental Theory of Chemically Reacting Flow Systems, Benjamin-Cummings, 1985.
doi: 10.1201/9780429494055. |
show all references
References:
[1] |
A. Arakelyan,
Convergence of the finite difference scheme for a general class of the spatial segregation of reaction-diffusion systems, Comput. Math. Appl., 75 (2018), 4232-4240.
doi: 10.1016/j.camwa.2018.03.025. |
[2] |
A. Arakelyan and F. Bozorgnia,
On the uniqueness of the limiting solution to a strongly competing system, Electronic J. Differential Equations, 96 (2017), 1-8.
|
[3] |
F. Bozorgnia,
Numerical algorithms for the spatial segregation of competitive systems, SIAM J. Sci. Comput., 31 (2009), 3946-3958.
doi: 10.1137/080722588. |
[4] |
F. Bozorgnia and A. Arakelyan,
Numerical algorithms for a variational problem of the spatial segregation of reaction-diffusion systems, Appl. Math. Comput., 219 (2013), 8863-8875.
doi: 10.1016/j.amc.2013.03.074. |
[5] |
L. A. Caffarelli and A. Friedman,
Partial regularity of the zero-set of solutions of linear and superlinear elliptic equations, J. Differential Equations, 60 (1985), 420-433.
doi: 10.1016/0022-0396(85)90133-0. |
[6] |
L. A. Caffarelli and F.-H. Lin,
Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries, J. Amer. Math. Soc., 21 (2008), 847-862.
doi: 10.1090/S0894-0347-08-00593-6. |
[7] |
L. A. Caffarelli and J.-M. Roquejoffre,
Uniform Hölder estimate in a class of elliptic systems and applications to singular limits in models for diffusion flames, Arch. Ration. Mech. Anal., 183 (2007), 457-487.
doi: 10.1007/s00205-006-0013-9. |
[8] |
M. Conti, S. Terracini and G. Verzini,
Uniqueness and least energy property for solutions to strongly competing systems, Interfaces Free Boundaries, 8 (2006), 437-446.
doi: 10.4171/IFB/150. |
[9] |
E. C. M. Crooks, E. N. Dancer and D. Hilhorst,
On long-term dynamics for competition-diffusion system with inhomogeneous dirichlet boundary conditions, Topol. Methods Nonlinear Anal., 30 (2007), 1-36.
|
[10] |
E. N. Dancer and Y. H. Du,
Competing species equations with diffusion, large interactions, and jumping nonlinearities, J. Differential Equations, 114 (1994), 434-475.
doi: 10.1006/jdeq.1994.1156. |
[11] |
J. W. Dold,
Flame propagation in a nonuniform mixture: Analysis of a slowly varying triple flame, Comb. Flame., 76 (1989), 71-88.
doi: 10.1016/0010-2180(89)90079-5. |
[12] |
S-I. Ei and E. Yanagida,
Dynamics of interfaces in competition-diffusion systems, SIAM J. Appl. Math., 54 (1994), 1355-1373.
doi: 10.1137/S0036139993247343. |
[13] |
E. Giusti and M. Giaquinta, Global $C^{1, \alpha}$-regularity for second order quasilinear elliptic euqations in divergence form, Journal für die Reine und Angewandte Mathematik, 351 (1984), 55–65. |
[14] |
P. W. Schaefer,
Some maximum principles in semilinear elliptic equations, Proceedings of the American Mathematical Society, 98 (1986), 97-102.
doi: 10.1090/S0002-9939-1986-0848884-X. |
[15] |
K. Wang and Z. Zhang,
Some new results in competing systems with many species, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 739-776.
doi: 10.1016/j.anihpc.2009.11.004. |
[16] |
F. A. Williams, Combustion Theory: The Fundamental Theory of Chemically Reacting Flow Systems, Benjamin-Cummings, 1985.
doi: 10.1201/9780429494055. |





[1] |
Avner Friedman. Free boundary problems arising in biology. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 193-202. doi: 10.3934/dcdsb.2018013 |
[2] |
R.G. Duran, J.I. Etcheverry, J.D. Rossi. Numerical approximation of a parabolic problem with a nonlinear boundary condition. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 497-506. doi: 10.3934/dcds.1998.4.497 |
[3] |
Anna Lisa Amadori. Contour enhancement via a singular free boundary problem. Conference Publications, 2007, 2007 (Special) : 44-53. doi: 10.3934/proc.2007.2007.44 |
[4] |
Wenlei Li, Shaoyun Shi. Singular perturbed renormalization group theory and its application to highly oscillatory problems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1819-1833. doi: 10.3934/dcdsb.2018089 |
[5] |
Avner Friedman. Free boundary problems for systems of Stokes equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1455-1468. doi: 10.3934/dcdsb.2016006 |
[6] |
Serena Dipierro, Enrico Valdinoci. (Non)local and (non)linear free boundary problems. Discrete and Continuous Dynamical Systems - S, 2018, 11 (3) : 465-476. doi: 10.3934/dcdss.2018025 |
[7] |
Noriaki Yamazaki. Almost periodicity of solutions to free boundary problems. Conference Publications, 2001, 2001 (Special) : 386-397. doi: 10.3934/proc.2001.2001.386 |
[8] |
Xinfu Chen, Bei Hu, Jin Liang, Yajing Zhang. Convergence rate of free boundary of numerical scheme for American option. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1435-1444. doi: 10.3934/dcdsb.2016004 |
[9] |
Tong Yang, Fahuai Yi. Global existence and uniqueness for a hyperbolic system with free boundary. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 763-780. doi: 10.3934/dcds.2001.7.763 |
[10] |
Arnaud Münch, Ademir Fernando Pazoto. Boundary stabilization of a nonlinear shallow beam: theory and numerical approximation. Discrete and Continuous Dynamical Systems - B, 2008, 10 (1) : 197-219. doi: 10.3934/dcdsb.2008.10.197 |
[11] |
G. Acosta, Julián Fernández Bonder, P. Groisman, J.D. Rossi. Numerical approximation of a parabolic problem with a nonlinear boundary condition in several space dimensions. Discrete and Continuous Dynamical Systems - B, 2002, 2 (2) : 279-294. doi: 10.3934/dcdsb.2002.2.279 |
[12] |
Yusuke Murase, Atsushi Kadoya, Nobuyuki Kenmochi. Optimal control problems for quasi-variational inequalities and its numerical approximation. Conference Publications, 2011, 2011 (Special) : 1101-1110. doi: 10.3934/proc.2011.2011.1101 |
[13] |
Ángela Jiménez-Casas, Aníbal Rodríguez-Bernal. Dynamic boundary conditions as limit of singularly perturbed parabolic problems. Conference Publications, 2011, 2011 (Special) : 737-746. doi: 10.3934/proc.2011.2011.737 |
[14] |
Z. Foroozandeh, Maria do rosário de Pinho, M. Shamsi. On numerical methods for singular optimal control problems: An application to an AUV problem. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2219-2235. doi: 10.3934/dcdsb.2019092 |
[15] |
Hirotoshi Kuroda, Noriaki Yamazaki. Approximating problems of vectorial singular diffusion equations with inhomogeneous terms and numerical simulations. Conference Publications, 2009, 2009 (Special) : 486-495. doi: 10.3934/proc.2009.2009.486 |
[16] |
Ángela Jiménez-Casas, Aníbal Rodríguez-Bernal. Boundary feedback as a singular limit of damped hyperbolic problems with terms concentrating at the boundary. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5125-5147. doi: 10.3934/dcds.2019208 |
[17] |
Avner Friedman, Xiulan Lai. Free boundary problems associated with cancer treatment by combination therapy. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 6825-6842. doi: 10.3934/dcds.2019233 |
[18] |
Ugur G. Abdulla, Evan Cosgrove, Jonathan Goldfarb. On the Frechet differentiability in optimal control of coefficients in parabolic free boundary problems. Evolution Equations and Control Theory, 2017, 6 (3) : 319-344. doi: 10.3934/eect.2017017 |
[19] |
Daniela De Silva, Fausto Ferrari, Sandro Salsa. On two phase free boundary problems governed by elliptic equations with distributed sources. Discrete and Continuous Dynamical Systems - S, 2014, 7 (4) : 673-693. doi: 10.3934/dcdss.2014.7.673 |
[20] |
Daniela De Silva, Fausto Ferrari, Sandro Salsa. Recent progresses on elliptic two-phase free boundary problems. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 6961-6978. doi: 10.3934/dcds.2019239 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]